Skip to main content

Advertisement

Log in

Metformin Attenuates Aβ Pathology Mediated Through Levamisole Sensitive Nicotinic Acetylcholine Receptors in a C. elegans Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The metabolic disease, type 2 diabetes mellitus (T2DM), is a major risk factor for Alzheimer’s disease (AD). This suggests that drugs such as metformin that are used to treat T2DM may also be therapeutic toward AD and indicates an interaction between AD and energy metabolism. In this study, we have investigated the effects of metformin and another T2DM drug, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) in C. elegans expressing human Aβ42. We found that Aβ expressed in muscle inhibited levamisole sensitive nicotinic acetylcholine receptors and that metformin delayed Aβ-linked paralysis and improved acetylcholine neurotransmission in these animals. Metformin also moderated the effect of neuronal expression of Aβ: decreasing hypersensitivity to serotonin, restoring normal chemotaxis, and improving fecundity. Metformin was unable to overcome the small effect of neuronal Aβ on egg viability. The protective effects of metformin were associated with a decrease in the amount of toxic, oligomeric Aβ. AICAR has a similar protective effect against Aβ toxicity. This work supports the notion that anti-diabetes drugs and metabolic modulators may be effective against AD and that the worm model can be used to identify the specific interactions between Aβ and cellular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AICAR:

5-Aminoimidazole-4-carboxamide ribonucleotide

AMP:

Adenosine monophosphate

AMPK:

5′ AMP-activated protein kinase

Aβ:

Amyloid beta

BACE1:

Beta-secretase 1

CI:

Chemotaxis index

T2DM:

Type 2 diabetes mellitus

References

  1. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. doi:10.1016/j.bcp.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509. doi:10.1038/nrn2168

    Article  CAS  PubMed  Google Scholar 

  3. Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9:204. doi:10.3389/fnins.2015.00204

    Article  PubMed  PubMed Central  Google Scholar 

  4. Craft S, Cholerton B, Baker LD (2013) Insulin and Alzheimer’s disease: untangling the web. J Alzheimer’s Dis : JAD 33(Suppl 1):S263–S275. doi:10.3233/JAD-2012-129042

    PubMed  Google Scholar 

  5. Verdile G, Fuller SJ, Martins RN (2015) The role of Type 2 Diabetes in neurodegeneration. Neurobiol Dis. doi:10.1016/j.nbd.2015.04.008

    PubMed  Google Scholar 

  6. Nguyen S, Major K, Demonet JF, Smith C, Rubli E, Humbert M, Bula C (2014) Diabetes and dementia: the dangerous liaisons? Rev Med Suisse 10(449):2090–2092–2094–2096

    Google Scholar 

  7. Ma L, Wang J, Li Y (2015) Insulin resistance and cognitive dysfunction. Clin Chim Acta; Int J Clin Chem 444:18–23. doi:10.1016/j.cca.2015.01.027

    Article  CAS  Google Scholar 

  8. Ahmad W (2013) Overlapped metabolic and therapeutic links between Alzheimer and diabetes. Mol Neurobiol 47(1):399–424. doi:10.1007/s12035-012-8352-z

    Article  CAS  PubMed  Google Scholar 

  9. Yarchoan M, Arnold SE (2014) Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63(7):2253–2261. doi:10.2337/db14-0287

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sebastiao I, Candeias E, Santos MS, de Oliveira CR, Moreira PI, Duarte AI (2014) Insulin as a Bridge between Type 2 Diabetes and Alzheimer Disease - How Anti-Diabetics Could be a Solution for Dementia. Front Endocrinol 5:110. doi:10.3389/fendo.2014.00110

    Article  Google Scholar 

  11. Rosales-Corral S, Tan DX, Manchester L, Reiter RJ (2015) Diabetes and Alzheimer Disease, Two Overlapping Pathologies with the Same Background: Oxidative Stress. Oxidative Med Cell Longev 2015:985845. doi:10.1155/2015/985845

    Article  Google Scholar 

  12. Barbagallo M, Dominguez LJ (2014) Type 2 diabetes mellitus and Alzheimer’s disease. World J Diabetes 5(6):889–893. doi:10.4239/wjd.v5.i6.889

    Article  PubMed  PubMed Central  Google Scholar 

  13. Palenickova E, Cahova M, Drahota Z, Kazdova L, Kalous M (2011) Inhibitory effect of metformin on oxidation of NADH-dependent substrates in rat liver homogenate. Physiol Res / Acad Scient Bohemoslov 60(5):835–839

    CAS  Google Scholar 

  14. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510(7506):542–546. doi:10.1038/nature13270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rena G, Pearson ER, Sakamoto K (2013) Molecular mechanism of action of metformin: old or new insights? Diabetologia 56(9):1898–1906. doi:10.1007/s00125-013-2991-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pernicova I, Korbonits M (2014) Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156. doi:10.1038/nrendo.2013.256

    Article  CAS  PubMed  Google Scholar 

  17. Gunton JE, Delhanty PJ, Takahashi S, Baxter RC (2003) Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab 88(3):1323–1332. doi:10.1210/jc.2002-021394

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW et al (2012) Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11(1):23–35. doi:10.1016/j.stem.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  19. Moore EM, Mander AG, Ames D, Kotowicz MA, Carne RP, Brodaty H, Woodward M, Boundy K et al (2013) Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36(10):2981–2987. doi:10.2337/dc13-0229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Imfeld P, Bodmer M, Jick SS, Meier CR (2012) Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case–control study. J Am Geriatr Soc 60(5):916–921. doi:10.1111/j.1532-5415.2012.03916.x

    Article  PubMed  Google Scholar 

  21. Hettich MM, Matthes F, Ryan DP, Griesche N, Schroder S, Dorn S, Kraubeta S, Ehninger D (2014) The anti-diabetic drug metformin reduces BACE1 protein level by interfering with the MID1 complex. PLoS One 9(7):e102420. doi:10.1371/journal.pone.0102420

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, Thompson RC, Zhao Y et al (2009) Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A 106(10):3907–3912. doi:10.1073/pnas.0807991106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM, Purohit DP, Lesser G et al (2008) Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 71(10):750–757. doi:10.1212/01.wnl.0000324925.95210.6d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92(20):9368–9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30(1):22–33. doi:10.1016/j.neurobiolaging.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  26. Misra P, Chakrabarti R (2007) The role of AMP kinase in diabetes. Indian J Med Res 125(3):389–398

    CAS  PubMed  Google Scholar 

  27. Barthel A, Schmoll D, Kruger KD, Roth RA, Joost HG (2002) Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase. Endocrinology 143(8):3183–3186. doi:10.1210/endo.143.8.8792

    Article  CAS  Google Scholar 

  28. McColl G, Roberts BR, Pukala TL, Kenche VB, Roberts CM, Link CD, Ryan TM, Masters CL et al (2012) Utility of an improved model of amyloid-beta (Abeta(1)(−)(4)(2)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease. Mol Neurodegener 7:57. doi:10.1186/1750-1326-7-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL, Barnham KJ, Cherny RA et al (2009) The Caenorhabditis elegans A beta 1–42 model of Alzheimer disease predominantly expresses A beta 3–42. J Biol Chem 284(34):22697–22702. doi:10.1074/jbc.C109.028514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stiernagle T (2006) Maintenance of C. elegans. WormBook : the online review of C elegans biology.1–11. doi:10.1895/wormbook.1.101.1

  31. Mathew MD, Mathew ND, Ebert PR (2012) WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One 7(3):e33483. doi:10.1371/journal.pone.0033483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahoney TR, Luo S, Nonet ML (2006) Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 1(4):1772–1777. doi:10.1038/nprot.2006.281

    Article  CAS  PubMed  Google Scholar 

  33. Lewis JA, Elmer JS, Skimming J, McLafferty S, Fleming J, McGee T (1987) Cholinergic receptor mutants of the nematode Caenorhabditis elegans. J Neurosci: Off J Soc Neurosci 7(10):3059–3071

    CAS  Google Scholar 

  34. Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2010) Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J Alzheimer’s Dis : JAD 19(2):681–690. doi:10.3233/JAD-2010-1267

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438(7065):179–184. doi:10.1038/nature04216

    Article  CAS  PubMed  Google Scholar 

  36. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci: Off J Soc Neurosci 26(50):13102–13113. doi:10.1523/JNEUROSCI.3448-06.2006

    Article  CAS  Google Scholar 

  38. Dostal V, Link CD (2010) Assaying beta-amyloid toxicity using a transgenic C. elegans model. Journal of visualized experiments : JoVE (44). doi:10.3791/2252

  39. Askanas V, Engel WK, Nogalska A (2015) Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta 1852(4):633–643. doi:10.1016/j.bbadis.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  40. Saharia K, Arya U, Kumar R, Sahu R, Das CK, Gupta K, Dwivedi H, Subramaniam JR (2012) Reserpine modulates neurotransmitter release to extend lifespan and alleviate age-dependent Abeta proteotoxicity in Caenorhabditis elegans. Exp Gerontol 47(2):188–197. doi:10.1016/j.exger.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  41. Ballivet M, Alliod C, Bertrand S, Bertrand D (1996) Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol 258(2):261–269. doi:10.1006/jmbi.1996.0248

    Article  CAS  PubMed  Google Scholar 

  42. Machino K, Link CD, Wang S, Murakami H, Murakami S (2014) A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons. Front Genet 5:202. doi:10.3389/fgene.2014.00202

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schafer WR, Sanchez BM, Kenyon CJ (1996) Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 143(3):1219–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277(6):1348–1358. doi:10.1111/j.1742-4658.2010.07568.x

    Article  CAS  PubMed  Google Scholar 

  45. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260. doi:10.1096/fj.06-7703com

    Article  CAS  PubMed  Google Scholar 

  46. Sliwinska A, Drzewoski J (2015) Molecular action of metformin in hepatocytes: an updated insight. Curr Diabetes Rev 11(3):175–181

    Article  CAS  PubMed  Google Scholar 

  47. Cai Z, Li B, Li K, Zhao B (2012) Down-regulation of amyloid-beta through AMPK activation by inhibitors of GSK-3beta in SH-SY5Y and SH-SY5Y-AbetaPP695 cells. J Alzheimer’s Dis : JAD 29(1):89–98. doi:10.3233/JAD-2012-111649

    CAS  PubMed  Google Scholar 

  48. Nakamaru K, Matsumoto K, Taguchi T, Suefuji M, Murata Y, Igata M, Kawashima J, Kondo T et al (2005) AICAR, an activator of AMP-activated protein kinase, down-regulates the insulin receptor expression in HepG2 cells. Biochem Biophys Res Commun 328(2):449–454. doi:10.1016/j.bbrc.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  49. Wu Y, Luo Y (2005) Transgenic C. elegans as a model in Alzheimer’s research. Curr Alzheimer Res 2(1):37–45

    Article  CAS  PubMed  Google Scholar 

  50. Lublin AL, Link CD (2013) Alzheimer’s disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for beta-amyloid peptide-induced toxicity. Drug Discov Today Technol 10(1):e115–e119. doi:10.1016/j.ddtec.2012.02.002

    Article  CAS  Google Scholar 

  51. Gama Sosa MA, De Gasperi R, Elder GA (2012) Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 131(4):535–563. doi:10.1007/s00439-011-1119-1

    Article  PubMed  Google Scholar 

  52. Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250:94–103. doi:10.1016/j.expneurol.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  53. Gupta A, Bisht B, Dey CS (2011) Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology 60(6):910–920. doi:10.1016/j.neuropharm.2011.01.033

    Article  CAS  PubMed  Google Scholar 

  54. Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 101(4):564–574. doi:10.1016/j.pbb.2012.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239. doi:10.1016/j.cell.2013.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Braeckman BP, Schoofs L et al (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A 111(24):E2501–E2509. doi:10.1073/pnas.1321776111

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu Q, Huang Y, Shen J, Steffensen S, Wu J (2012) Functional alpha7beta2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid beta peptides. BMC Neurosci 13:155. doi:10.1186/1471-2202-13-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qian H, Robertson AP, Powell-Coffman JA, Martin RJ (2008) Levamisole resistance resolved at the single-channel level in Caenorhabditis elegans. FASEB J 22(9):3247–3254. doi:10.1096/fj.08-110502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levandoski MM, Piket B, Chang J (2003) The anthelmintic levamisole is an allosteric modulator of human neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 471(1):9–20

    Article  CAS  PubMed  Google Scholar 

  60. Parri HR, Hernandez CM, Dineley KT (2011) Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8):931–942. doi:10.1016/j.bcp.2011.06.039

    Article  CAS  PubMed  Google Scholar 

  61. Cooke JP, Ghebremariam YT (2008) Endothelial nicotinic acetylcholine receptors and angiogenesis. Trends Cardiovasc Med 18(7):247–253. doi:10.1016/j.tcm.2008.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76(1):116–129. doi:10.1016/j.neuron.2012.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rand JB (2007) Acetylcholine. WormBook : the online review of C elegans biology.1–21. doi:10.1895/wormbook.1.131.1

  64. Lee JE, Jeong PY, Joo HJ, Kim H, Lee T, Koo HS, Paik YK (2011) STR-33, a novel G protein-coupled receptor that regulates locomotion and egg laying in Caenorhabditis elegans. J Biol Chem 286(46):39860–39870. doi:10.1074/jbc.M111.241000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown MK, Luo Y (2009) Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans. BMC Neurosci 10:62. doi:10.1186/1471-2202-10-62

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci: Off J Soc Neurosci 23(22):8060–8069

    CAS  Google Scholar 

  67. Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY (2005) Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169(3):1425–1436. doi:10.1534/genetics.104.032540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weinshenker D, Garriga G, Thomas JH (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci: Off J Soc Neurosci 15(10):6975–6985

    CAS  Google Scholar 

  69. Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104(4):619–647

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cubeddu LX, Bonisch H, Gothert M, Molderings G, Racke K, Ramadori G, Miller KJ, Schworer H (2000) Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors. Naunyn Schmiedeberg’s Arch Pharmacol 361(1):85–91

    Article  CAS  Google Scholar 

  71. Picone P, Nuzzo D, Caruana L, Messina E, Barera A, Vasto S, Di Carlo M (2015) Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-kappaB activation: Use of insulin to attenuate metformin’s effect. Biochim Biophys Acta 1853(5):1046–1059. doi:10.1016/j.bbamcr.2015.01.017

    Article  CAS  PubMed  Google Scholar 

  72. Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of beta-amyloid peptide toxicity. Genetics 186(3):857–866. doi:10.1534/genetics.110.120436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, Cooper BR, Jannasch AH et al (2015) Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease beta-amyloid oligomerization. Mol Nutr Food Res. doi:10.1002/mnfr.201400544

    Google Scholar 

  74. Wang J, Varghese M, Ono K, Yamada M, Levine S, Tzavaras N, Gong B, Hurst WJ et al (2014) Cocoa extracts reduce oligomerization of amyloid-beta: implications for cognitive improvement in Alzheimer’s disease. J Alzheimer’s Dis : JAD 41(2):643–650. doi:10.3233/JAD-132231

    CAS  PubMed  Google Scholar 

  75. Zhang LF, Zhou ZW, Wang ZH, Du YH, He ZX, Cao C, Zhou SF (2015) Coffee and caffeine potentiate the antiamyloidogenic activity of melatonin via inhibition of Abeta oligomerization and modulation of the Tau-mediated pathway in N2a/APP cells. Drug Des Devel Ther 9:241–272. doi:10.2147/DDDT.S71106

    PubMed  Google Scholar 

  76. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi:10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nimmrich V, Ebert U (2009) Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Rev Neurosci 20(1):1–12

    Article  CAS  PubMed  Google Scholar 

  78. Knight EM, Kim SH, Kottwitz JC, Hatami A, Albay R, Suzuki A, Lublin A, Alberini CM et al (2016) Effective anti-Alzheimer Abeta therapy involves depletion of specific Abeta oligomer subtypes. Neurol Neuroimmunol Neuroinflamm 3(3):e237. doi:10.1212/NXI.0000000000000237

    Article  PubMed  PubMed Central  Google Scholar 

  79. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2(6):a006262. doi:10.1101/cshperspect.a006262

    Article  PubMed  PubMed Central  Google Scholar 

  80. Regitz C, Fitzenberger E, Mahn FL, Dussling LM, Wenzel U (2015) Resveratrol reduces amyloid-beta (Abeta)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr. doi:10.1007/s00394-015-0894-1

    PubMed  Google Scholar 

  81. Park H, Kam TI, Kim Y, Choi H, Gwon Y, Kim C, Koh JY, Jung YK (2012) Neuropathogenic role of adenylate kinase-1 in Abeta-mediated tau phosphorylation via AMPK and GSK3beta. Hum Mol Genet 21(12):2725–2737. doi:10.1093/hmg/dds100

    Article  CAS  PubMed  Google Scholar 

  82. Ayasolla KR, Singh AK, Singh I (2005) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) attenuates the expression of LPS- and Abeta peptide-induced inflammatory mediators in astroglia. J Neuroinflammation 2:21. doi:10.1186/1742-2094-2-21

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation. Neuron 78(1):94–108. doi:10.1016/j.neuron.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Park SY, Lee HR, Lee WS, Shin HK, Kim HY, Hong KW, Kim CD (2016) Cilostazol Modulates Autophagic Degradation of beta-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKalpha Signaling in Neuronal Cells. PLoS One 11(8):e0160620. doi:10.1371/journal.pone.0160620

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2016) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry. doi:10.1038/mp.2016.23

    PubMed Central  Google Scholar 

  86. Zhao H, Wang ZC, Wang KF, Chen XY (2015) Abeta peptide secretion is reduced by Radix Polygalae-induced autophagy via activation of the AMPK/mTOR pathway. Mol Med Rep 12(2):2771–2776. doi:10.3892/mmr.2015.3781

    CAS  PubMed  Google Scholar 

  87. Godoy JA, Rios JA, Zolezzi JM, Braidy N, Inestrosa NC (2014) Signaling pathway cross talk in Alzheimer’s disease. Cell Commun Signal 12:23. doi:10.1186/1478-811X-12-23

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jürgen Goetz for providing valuable suggestions and guidance related to AD, as well as Mazhar Hussain and Sultan Asad for assisting with protein immunoblotting. The C. elegans strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). WA was supported by an IPRS PhD scholarship from the Australian government as well as UQCent scholarship from the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Ebert.

Ethics declarations

Conflict of Interest

The authors have no actual or potential conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Ebert, P.R. Metformin Attenuates Aβ Pathology Mediated Through Levamisole Sensitive Nicotinic Acetylcholine Receptors in a C. elegans Model of Alzheimer’s Disease. Mol Neurobiol 54, 5427–5439 (2017). https://doi.org/10.1007/s12035-016-0085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0085-y

Keywords

Navigation