Skip to main content
Log in

Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58. doi:10.1146/annurev.nutr.23.020102.075739

    Article  CAS  PubMed  Google Scholar 

  2. Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17(2):83–93. doi:10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  3. Beard J (2003) Iron deficiency alters brain development and functioning. J Nutr 133(5 Suppl 1):1468S–1472S

    CAS  PubMed  Google Scholar 

  4. Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13(3):158–165. doi:10.1016/j.spen.2006.08.004

    Article  PubMed  Google Scholar 

  5. Pinero DJ, Connor JR (2000) Iron in the brain: an important contributor in normal and diseased states. Neuroscientist 6(6):435–453

    Article  CAS  Google Scholar 

  6. Rathnasamy G, Ling EA, Kaur C (2011) Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci 31(49):17982–17995. doi:10.1523/jneurosci.2250-11.2011

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez-Diaz A, Hilario E, de Cerio FG, Valls-i-Soler A, Alvarez-Diaz FJ (2007) Hypoxic-ischemic injury in the immature brain—key vascular and cellular players. Neonatology 92(4):227–235. doi:10.1159/000103741

    Article  CAS  PubMed  Google Scholar 

  8. Baud O, Daire JL, Dalmaz Y, Fontaine RH, Krueger RC, Sebag G, Evrard P, Gressens P et al (2004) Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 14(1):1–10

    Article  PubMed  Google Scholar 

  9. Huang BY, Castillo M (2008) Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics 28(2):417–439. doi:10.1148/rg.282075066

    Article  PubMed  Google Scholar 

  10. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21(4):1302–1312

    CAS  PubMed  Google Scholar 

  11. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22(2):455–463

    CAS  PubMed  Google Scholar 

  12. Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 338(1):97–113

    Article  CAS  PubMed  Google Scholar 

  13. Connor JR, Pavlick G, Karli D, Menzies SL, Palmer C (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355(1):111–123. doi:10.1002/cne.903550112

    Article  CAS  PubMed  Google Scholar 

  14. Yu GS, Steinkirchner TM, Rao GA, Larkin EC (1986) Effect of prenatal iron deficiency on myelination in rat pups. Am J Pathol 125(3):620–624

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J, Connor JR (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77(5):681–689. doi:10.1002/jnr.20207

    Article  CAS  PubMed  Google Scholar 

  16. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57(5):467–478

    Article  PubMed  Google Scholar 

  17. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67(3):1014–1022

    Article  CAS  PubMed  Google Scholar 

  18. Juurlink BH (1997) Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev 21(2):151–166

    Article  CAS  PubMed  Google Scholar 

  19. Hemdan S, Almazan G (2007) Deficient peroxide detoxification underlies the susceptibility of oligodendrocyte progenitors to dopamine toxicity. Neuropharmacology 52(6):1385–1395. doi:10.1016/j.neuropharm.2007.01.019

    Article  CAS  PubMed  Google Scholar 

  20. Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83:969–974

    Article  PubMed  Google Scholar 

  21. Youdim MB, Ben-Shachar D, Yehuda S, Riederer P (1990) The role of iron in the basal ganglion. Adv Neurol 53:155–162

    CAS  PubMed  Google Scholar 

  22. Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145(5):523–531

    Article  CAS  PubMed  Google Scholar 

  23. Rouault TA, Hentze MW, Haile DJ, Harford JB, Klausner RD (1989) The iron-responsive element binding protein: a method for the affinity purification of a regulatory RNA-binding protein. Proc Natl Acad Sci U S A 86(15):5768–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662. doi:10.1146/annurev.nutr.20.1.627

    Article  CAS  PubMed  Google Scholar 

  25. Schneider BD, Leibold EA (2003) Effects of iron regulatory protein regulation on iron homeostasis during hypoxia. Blood 102(9):3404–3411. doi:10.1182/blood-2003-02-0433

    Article  CAS  PubMed  Google Scholar 

  26. Toth I, Yuan L, Rogers JT, Boyce H, Bridges KR (1999) Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells. J Biol Chem 274(7):4467–4473

    Article  CAS  PubMed  Google Scholar 

  27. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11(4):372–380. doi:10.1038/sj.cdd.4401378

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658. doi:10.1111/j.1742-4658.2007.05639.x

    Article  CAS  PubMed  Google Scholar 

  29. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293. doi:10.1089/ars.2007.1782

    Article  CAS  PubMed  Google Scholar 

  30. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. doi:10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  31. Bodalia A, Li H, Jackson MF (2013) Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 34(1):49–59. doi:10.1038/aps.2012.139

    Article  CAS  PubMed  Google Scholar 

  32. Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10(2):156–165. doi:10.1016/j.coph.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  33. Park EJ, Choi DH, Kim Y, Lee EW, Song J, Cho MH, Kim JH, Kim SW (2014) Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol In Vitro 28(8):1402–1412. doi:10.1016/j.tiv.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  34. Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J, Handa JT (2014) Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med 69:1–14. doi:10.1016/j.freeradbiomed.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheldon RA, Chuai J, Ferriero DM (1996) A rat model for hypoxic-ischemic brain damage in very premature infants. Biol Neonate 69(5):327–341

    Article  CAS  PubMed  Google Scholar 

  36. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    CAS  PubMed  Google Scholar 

  37. Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44(3):183–189. doi:10.1002/glia.10274

    Article  PubMed  Google Scholar 

  38. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  CAS  PubMed  Google Scholar 

  39. Bhat RV, Axt KJ, Fosnaugh JS, Smith KJ, Johnson KA, Hill DE, Kinzler KW, Baraban JM (1996) Expression of the APC tumor suppressor protein in oligodendroglia. Glia 17(2):169–174. doi:10.1002/(SICI)1098-1136(199606)17:2<169::AID-GLIA8>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  40. Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130. doi:10.1523/jneurosci.3467-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  42. Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW (2001) Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci 23(3):203–208

    Article  CAS  PubMed  Google Scholar 

  43. Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C (2011) Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-kappaB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 59(4):521–539. doi:10.1002/glia.21121

    Article  PubMed  Google Scholar 

  44. Dugan LL, Choi DW (1994) Excitotoxicity, free radicals, and cell membrane changes. Ann Neurol 35(Suppl):S17–21

    Article  CAS  PubMed  Google Scholar 

  45. Youdim MB, Ben-Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 8(1):1–12. doi:10.1002/mds.870080102

    Article  CAS  Google Scholar 

  46. Muhoberac BB, Vidal R (2013) Abnormal iron homeostasis and neurodegeneration. Front Aging Neurosci 5:32. doi:10.3389/fnagi.2013.00032

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, Drexler IR, Chen X et al (2009) Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 16(1):35–46. doi:10.1016/j.devcel.2008.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53. doi:10.1007/s00401-009-0601-5

    Article  PubMed  Google Scholar 

  49. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664. doi:10.1172/jci26373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. doi:10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hajnoczky G, Csordas G, Madesh M, Pacher P (2000) Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium 28(5-6):349–363. doi:10.1054/ceca.2000.0169

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz A, Matute C, Alberdi E (2010) Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death Dis 1:e54. doi:10.1038/cddis.2010.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang H, Dong Y, Zhang J, Xu Z, Wang G, Swain CA, Zhang Y, Xie Z (2014) Isoflurane induces endoplasmic reticulum stress and caspase activation through ryanodine receptors. Br J Anaesth 113(4):695–707. doi:10.1093/bja/aeu053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawakami M, Okabe E (1998) Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol Pharmacol 53(3):497–503

    CAS  PubMed  Google Scholar 

  55. Munoz P, Zavala G, Castillo K, Aguirre P, Hidalgo C, Nunez MT (2006) Effect of iron on the activation of the MAPK/ERK pathway in PC12 neuroblastoma cells. Biol Res 39(1):189–190

    Article  CAS  PubMed  Google Scholar 

  56. Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10(5):465–472. doi:10.1006/scdb.1999.0318

    Article  CAS  PubMed  Google Scholar 

  57. Quinones QJ, de Ridder GG, Pizzo SV (2008) GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol Histopathol 23(11):1409–1416

    CAS  PubMed  Google Scholar 

  58. Blond-Elguindi S, Fourie AM, Sambrook JF, Gething MJ (1993) Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem 268(17):12730–12735

    CAS  PubMed  Google Scholar 

  59. Ito D, Tanaka K, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y (2001) Up-regulation of the Ire1-mediated signaling molecule, Bip, in ischemic rat brain. Neuroreport 12(18):4023–4028

    Article  CAS  PubMed  Google Scholar 

  60. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    Article  CAS  PubMed  Google Scholar 

  61. Kraskiewicz H, FitzGerald U (2011) Partial XBP1 knockdown does not affect viability of oligodendrocyte precursor cells exposed to new models of hypoxia and ischemia in vitro. J Neurosci Res 89(5):661–673. doi:10.1002/jnr.22583

    Article  CAS  PubMed  Google Scholar 

  62. Barateiro A, Vaz AR, Silva SL, Fernandes A, Brites D (2012) ER stress, mitochondrial dysfunction and calpain/JNK activation are involved in oligodendrocyte precursor cell death by unconjugated bilirubin. Neruomol Med 14(4):285–302. doi:10.1007/s12017-012-8187-9

    Article  CAS  Google Scholar 

  63. Ye Z, Connor JR (2000) Identification of iron responsive genes by screening cDNA libraries from suppression subtractive hybridization with antisense probes from three iron conditions. Nucleic Acids Res 28(8):1802–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petrak J, Myslivcova D, Man P, Cmejla R, Cmejlova J, Vyoral D, Elleder M, Vulpe CD (2007) Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation, and changes in the methylation cycle. Am J Physiol Gastrointest Liver Physiol 292(6):G1490–1498. doi:10.1152/ajpgi.00455.2006

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira SJ, de Sousa M, Pinto JP (2011) ER stress and iron homeostasis: a new frontier for the UPR. Biochem Res Int 2011:896474. doi:10.1155/2011/896474

    Article  PubMed  Google Scholar 

  66. Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ (2008) Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48(5):1644–1654. doi:10.1002/hep.22498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li Q, Su D, O’Rourke B, Pogwizd SM, Zhou L (2014) Mitochondria-derived ROS bursts disturb calcium cycling and induce abnormal automaticity in guinea Pig cardiomyocyte: a theoretical study. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00493.2014

    Google Scholar 

  68. Son SM, Byun J, Roh SE, Kim SJ, Mook-Jung I (2014) Reduced IRE1alpha mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor. Cell Death Dis 5, e1188. doi:10.1038/cddis.2014.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456. doi:10.3390/ijms14010434

    Article  PubMed  PubMed Central  Google Scholar 

  70. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012:329635. doi:10.1155/2012/329635

    Article  PubMed  Google Scholar 

  71. Tan TC, Crawford DH, Jaskowski LA, Subramaniam VN, Clouston AD, Crane DI, Bridle KR, Anderson GJ et al (2013) Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Lab Investig 93(12):1295–1312. doi:10.1038/labinvest.2013.121

    Article  CAS  PubMed  Google Scholar 

  72. Lou LX, Geng B, Chen Y, Yu F, Zhao J, Tang CS (2009) Endoplasmic reticulum stress involved in heart and liver injury in iron-loaded rats. Clin Exp Pharmacol Physiol 36(7):612–618. doi:10.1111/j.1440-1681.2008.05114.x

    Article  CAS  PubMed  Google Scholar 

  73. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M (2004) Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357(2):127–130. doi:10.1016/j.neulet.2003.12.080

    Article  CAS  PubMed  Google Scholar 

  74. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182(2):367–377

    Article  CAS  PubMed  Google Scholar 

  75. Baud O, Li J, Zhang Y, Neve RL, Volpe JJ, Rosenberg PA (2004) Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci 20(7):1713–1726. doi:10.1111/j.1460-9568.2004.03616.x

    Article  PubMed  Google Scholar 

  76. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. doi:10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oh SH, Lim SC (2009) Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J Pharmacol Exp Ther 329(1):112–122. doi:10.1124/jpet.108.144113

    Article  CAS  PubMed  Google Scholar 

  78. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12), e423. doi:10.1371/journal.pbio.0040423

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M et al (2009) ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci 122(Pt 10):1626–1636. doi:10.1242/jcs.045625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trousson A, Makoukji J, Petit PX, Bernard S, Slomianny C, Schumacher M, Massaad C (2009) Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death. PLoS ONE 4(11), e8080. doi:10.1371/journal.pone.0008080

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by research grant R-181-000-120-213 from the National Medical Research Council (NMRC) and R-181-000-148-750 from the National University Health System (NUHS), Singapore.

Conflict of Interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjit Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnasamy, G., Murugan, M., Ling, EA. et al. Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress. Mol Neurobiol 53, 4713–4727 (2016). https://doi.org/10.1007/s12035-015-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9389-6

Keywords

Navigation