Skip to main content
Log in

Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hypoxic-ischemic brain damage (HIBD) poses a significant risk of neurological damage in newborns. This study investigates the impact of endoplasmic reticulum stress (ERS) on neuronal damage in neonatal HIBD and its underlying mechanisms. HIBD neonatal rat model was constructed and pre-treated with 4-phenylbutiric acid (4-PBA). Nissl and TUNEL staining were utilised to assess neuronal damage and apoptosis in rat brains. HIBD cell model was established by inducing oxygen-glucose deprivation (OGD) in rat H19-7 neurons, which were then pre-treated with Thapsigargin (TG), Ferrostatin-1 (Fer-1), or both. Cell viability and apoptosis of H19-7 neurons were analysed using cell counting kit-8 assay and TUNEL staining. GRP78-PERK-CHOP pathway activity and glutathione peroxidase-4 (GPX4) expression in rat brains and H19-7 neurons were assessed using Western blot. Ferroptosis-related indicators, including glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and iron content, were measured using commercial kits in both rat brains and H19-7 neurons. GRP78-PERK-CHOP pathway was overactivated in HIBD neonatal rats’ brains, which was mitigated by 4-PBA treatment. 4-PBA treatment demonstrated a reduction in neuronal damage and apoptosis in HIBD-affected neonatal rat brains. Furthermore, it attenuated ferroptosis in rats by increasing GPX4, GSH and SOD while decreasing MDA and iron content. In the OGD-induced H19-7 neurons, Fer-1 treatment counteracted the suppressive effects of TG on viability, the exacerbation of apoptosis, the promotion of ferroptosis and the activation of the GRP78-PERK-CHOP pathway. Overall, ERS facilitates neuronal damage in neonatal HIBD by inducing ferroptosis. Consequently, the suppression of ERS may represent a promising therapeutic strategy for treating neonatal HIBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhu, K., Zhu, X., Liu, S., Yu, J., Wu, S., & Hei, M. (2022). Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and Neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway. Oxidative Medicine and Cellular Longevity, 2022, 8438528.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Min, Y. J., Ling, E. A., & Li, F. (2020). Immunomodulatory mechanism and potential therapies for Perinatal hypoxic-ischemic brain damage. Frontiers in Pharmacology, 11, 580428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niu, X., Jiao, Z., Wang, Z., Jiang, A., Zhang, X., Zhang, H., et al. (2022). MiR-17-5p protects neonatal mice from hypoxic-ischemic brain damage by targeting Casp2. Neuroscience Letters, 772, 136475.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, L., Liu, S., Zhou, R., Sun, H., Su, X., Liu, Q., et al. (2022). Atorvastatin inhibits neuronal apoptosis via activating cAMP/PKA/p-CREB/BDNF pathway in hypoxic-ischemic neonatal rats. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 36(4), e22263.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, G., Zang, J., He, L., Zhu, H., Huang, J., Yuan, Z., et al. (2022). Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS nano, 16(1), 431–452.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X., Mi, L., Gu, G., Gao, X., Gao, X., Shi, M., et al. (2022). Dysfunctional endoplasmic reticulum-mitochondrion coupling is Associated with endoplasmic reticulum stress-Induced apoptosis and neurological deficits in a rodent model of severe Head Injury. Journal of Neurotrauma, 39(7–8), 560–576.

    Article  CAS  PubMed  Google Scholar 

  7. Niu, J., Wu, Z., Xue, H., Zhang, Y., Gao, Q., Li, C., et al. (2021). Sevoflurane post-conditioning alleviated hypoxic-ischemic brain injury in neonatal rats by inhibiting endoplasmic reticulum stress-mediated autophagy via IRE1 signalings. Neurochemistry International, 150, 105198.

    Article  CAS  PubMed  Google Scholar 

  8. Hu, Y., Wang, Z., Pan, S., Fang, M., Jiang, H., Mao, Y., et al. (2017). Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effect of aFGF in neonatal hypoxic-ischaemic brain injury. Oncotarget, 8(37), 60941–60953.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bai, X., Liu, S., Yuan, L., Xie, Y., Li, T., Wang, L., et al. (2016). Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice. Brain Research, 1646, 410–417.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y., Tu, L., Li, Y., Chen, D., & Wang, S. (2016). Notoginsenoside R1 protects against neonatal cerebral hypoxic-ischemic Injury through Estrogen receptor-dependent activation of endoplasmic reticulum stress pathways. The Journal of Pharmacology and Experimental Therapeutics, 357(3), 591–605.

    Article  CAS  PubMed  Google Scholar 

  11. Fang, M., Yuan, J., Jiang, S., Hu, Y., Pan, S., Zhu, J., et al. (2020). Dl-3-n-butylphthalide attenuates hypoxic-ischemic brain injury through inhibiting endoplasmic reticulum stress-induced cell apoptosis and alleviating blood-brain barrier disruption in newborn rats. Brain Research, 1747, 147046.

    Article  CAS  PubMed  Google Scholar 

  12. Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D. J., et al. (2023). Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy, 19(7), 1982–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, W., Zhang, T., Zheng, J., Zhou, Y., Lin, Z., & Fu, X. (2022). Ferroptosis is involved in hypoxic-ischemic brain damage in neonatal rats. Neuroscience, 487, 131–142.

    Article  CAS  PubMed  Google Scholar 

  14. Zeng, T., Zhou, Y., Yu, Y., Wang, J. W., Wu, Y., Wang, X., et al. (2023). rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice. International Immunopharmacology, 114, 109608.

    Article  CAS  PubMed  Google Scholar 

  15. He, Z., Shen, P., Feng, L., Hao, H., He, Y., Fan, G., et al. (2022). Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis. Ecotoxicology and Environmental Safety, 245, 114123.

    Article  CAS  PubMed  Google Scholar 

  16. Hui, Z., Wang, S., Li, J., Wang, J., & Zhang, Z. (2022). Compound Tongluo Decoction inhibits endoplasmic reticulum stress-induced ferroptosis and promoted angiogenesis by activating the Sonic hedgehog pathway in cerebral infarction. Journal of Ethnopharmacology, 283, 114634.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, J., Fang, Y., Zhang, M., Gao, Q., Li, J., Yuan, H., et al. (2024). Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Experimental Neurology, 372, 114641.

    Article  CAS  PubMed  Google Scholar 

  18. You, Q., Lan, X. B., Liu, N., Du, J., Ma, L., Yang, J. M., et al. (2023). Neuroprotective strategies for neonatal hypoxic-ischemic brain damage: Current status and challenges. European Journal of Pharmacology, 957, 176003.

    Article  CAS  PubMed  Google Scholar 

  19. Zuo, M. Y., Tang, T. J., Wang, X., Gu, J. F., Wang, L., Chen, J. (2022). Atractylenolide III Attenuates Apoptosis in H9c2 Cells by Inhibiting Endoplasmic Reticulum Stress through the GRP78/PERK/CHOP Signaling Pathway. Evidence-based complementary and alternative medicine: eCAM. ;2022:1149231.

  20. Thornton, C., Baburamani, A. A., Kichev, A., & Hagberg, H. (2017). Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochemical Society Transactions, 45(5), 1067–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doğanyiğit, Z., Okan, A., Akyüz, E., Yılmaz, S., Ateş, Ş., Taheri, S., et al. (2023). Can endoplasmic reticulum stress observed in the PTZ-kindling model seizures be prevented with TUDCA and 4-PBA? European Journal of Pharmacology, 960, 176072.

    Article  PubMed  Google Scholar 

  22. Wu, Z., Niu, J., Xue, H., Wang, S., & Zhao, P. (2021). Sodium 4-Phenylbutyrate protects hypoxic-ischemic brain Injury via attenuating endoplasmic reticulum stress in neonatal rats. Frontiers in Behavioral Neuroscience, 15, 632143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, M., Liu, Z., Zhou, W., Shen, M., Mao, N., Xu, H., et al. (2023). Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis. Translational Pediatrics, 12(11), 1944–1970.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, M., Lin, W., Tao, X., Zhou, W., Liu, Z., Zhang, Z., et al. (2023). Ginsenoside Rb1 inhibits ferroptosis to ameliorate hypoxic-ischemic brain damage in neonatal rats. International Immunopharmacology, 121, 110503.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y., Li, X., Wang, S., Miao, R., & Zhong, J. (2023). Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic approaches in Cardiovascular diseases. Nutrients. ;15(3).

  26. Hirata, Y., Cai, R., Volchuk, A., Steinberg, B. E., Saito, Y., Matsuzawa, A., et al. (2023). Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Current Biology: CB, 33(7), 1282–94e5.

    Article  CAS  PubMed  Google Scholar 

  27. Xing, G., Meng, L., Cao, S., Liu, S., Wu, J., Li, Q., et al. (2022). PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Reports, 23(8), e52280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du, S., Shi, H., Xiong, L., Wang, P., & Shi, Y. (2022). Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Frontiers in Endocrinology, 13, 1011669.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang, Y., Cui, J., Cui, M., & Jing, R. (2023). SLC7A11 promotes the progression of gastric cancer and regulates ferroptosis through PI3K/AKT pathway. Pathology Research and Practice, 248, 154646.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y., Wu, Q., Shan, X., Zhou, H., Wang, J., Hu, Y., et al. (2024). Ginkgolide B attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through disrupting NCOA4-FTH1 interaction. Journal of Ethnopharmacology, 318(Pt B), 116982.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, D., Zu, Y., Sun, W., & Fan, X. (2023). Setd1A-mediated methylation of h3k4me3 inhibits ferroptosis in non-small cell lung cancer by regulating the WTAPP1/WTAP axis. Current medicinal chemistry.

  32. Lv, Y., Wu, M., Wang, Z., Wang, J., & Ferroptosis (2023). From regulation of lipid peroxidation to the treatment of diseases. Cell Biology and Toxicology, 39(3), 827–851.

    Article  PubMed  Google Scholar 

  33. Endale, H. T., Tesfaye, W., & Mengstie, T. A. (2023). ROS induced lipid peroxidation and their role in ferroptosis. Frontiers in cell and Developmental Biology, 11, 1226044.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu, J., Zhao, L., Zhang, X., Ying, K., Zhou, R., Cai, W., et al. (2023). Salidroside ameliorates acetaminophen-induced acute liver injury through the inhibition of endoplasmic reticulum stress-mediated ferroptosis by activating the AMPK/SIRT1 pathway. Ecotoxicology and Environmental Safety, 262, 115331.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Z., Nan, P., Gong, Y., Tian, L., Zheng, Y., & Wu, Z. (2023). Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy (Vol. 164, p. 114897). Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

Download references

Funding

Ningxia Natural Science Foundation, the role of endoplasmic reticulum stress in the regulation of brain injury in hypoxic-ischemic rats (2022AAC03705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjia Ji.

Ethics declarations

Consent for Publication

The authors consent for publication in the Journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Liu, H., Niu, F. et al. Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01095-9

Keywords

Navigation