Skip to main content
Log in

Novel Sites of Neuroprotective Action of Dimebon (Latrepirdine)

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dimebon (latrepirdine) is an anti-histaminergic agent which belongs to a fast-growing group of “old” medicines suggested to be of therapeutic utility for pathological conditions different from their original design (“repositioning”). Here, we overview the most recent studies on Dimebon directed to pathological processes in the brain-involving in vivo models of proteinopathies. In the latter, neurodegenerative effects are attributed to a group of aggregate-prone proteins such as γ-synuclein, hyperphosphorylated tau, and fused in sarcoma (FUS), which are engaged in numerous neurological diseases. We also focus on in vitro models comprised of cultured SH-SY5Y neuroblastoma cells expressing mutant forms of transactive response DNA binding protein 43 kDa (TDP-43) and showing a reduced number of TDP-43 inclusion-containing cells upon Dimebon treatment along with activation of autophagy markers. Finally, we discuss Dimebon’s action in improving cellular energy balance, stabilizing mitochondrial function by increasing the threshold for nonselective mitochondrial pore opening, as well as increasing the calcium retention capacity of mitochondria and reducing lipid peroxidation. Our results, together with data from other laboratories, warrant re-evaluation of the therapeutic potential of Dimebon and its newly designed analogs as promising disease-modifying agents to treat neurodegenerative disorders. Further, emerging data favor a possible anti-aging effect and application of Dimebon for the treatment of depression, anxiety, and ischemia. The most pronounced effect of Dimebon is observed when treatment starts early in disease onset. This is a major factor which needs to be taken into account when planning future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, Hagan JJ, Holmes C et al (2012) Drug repositioning for Alzheimer’s disease. Nat Rev 11(11):833–846. doi:10.1038/nrd3869

    CAS  Google Scholar 

  2. Bachurin SO (2001) Medicinal and chemical approaches to focused search of agents for treatment and therapy of Alzheimer disease. Vopr Med Khim 47(2):155–197

    CAS  PubMed  Google Scholar 

  3. Bachurin S, Bukatina E, Lermontova N, Tkachenko S, Afanasiev A, Grigoriev V, Grigorieva I, Ivanov Y et al (2001) Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci 939:425–435

    Article  CAS  PubMed  Google Scholar 

  4. Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO, Seely L, Hung D et al (2008) Effect of Dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 372(9634):207–215. doi:10.1016/S0140-6736(08)61074-0

    Article  CAS  PubMed  Google Scholar 

  5. MacKay J, Harnett S, Machado P (2010) Pfizer and Medivation announce results from two phase 3 studies in Dimebon (latrepirdine*) Alzheimer’s disease clinical development program. http://press.pfizer.com/press-release/pfizer-and-medivation-announce-results-two-phase-3-studies-dimebon-latrepirdine-alzhei. Accessed 11 Nov 2014

  6. Bharadwaj PR, Bates KA, Porter T, Teimouri E, Perry G, Steele JW, Gandy S, Groth D et al (2013) Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases. Transl Psychiatry 3:e332. doi:10.1038/tp.2013.97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Miller G (2010) Pharmacology. The puzzling rise and fall of a dark-horse Alzheimer’s drug. Science 327(5971):1309. doi:10.1126/science.327.5971.1309

    Article  CAS  PubMed  Google Scholar 

  8. Bezprozvanny I (2010) The rise and fall of Dimebon. Drug News Perspect 23(8):518–523. doi:10.1358/dnp.2010.23.8.1500435

    PubMed Central  PubMed  Google Scholar 

  9. Grigorev VV, Dranyi OA, Bachurin SO (2003) Comparative study of action mechanisms of Dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons. Bull Exp Biol Med 136(5):474–477

    Article  CAS  PubMed  Google Scholar 

  10. Lermontova NN, Redkozubov AE, Shevtsova EF, Serkova TP, Kireeva EG, Bachurin SO (2001) Dimebon and tacrine inhibit neurotoxic action of beta-amyloid in culture and block L-type Ca(2+) channels. Bull Exp Biol Med 132(5):1079–1083

    Article  CAS  PubMed  Google Scholar 

  11. Okun I, Tkachenko SE, Khvat A, Mitkin O, Kazey V, Ivachtchenko AV (2010) From anti-allergic to anti-Alzheimer’s: molecular pharmacology of Dimebon. Curr Alzheimer Res 7(2):97–112

    Article  CAS  PubMed  Google Scholar 

  12. Giorgetti M, Gibbons JA, Bernales S, Alfaro IE, Drieu La Rochelle C, Cremers T, Altar CA, Wronski R et al (2010) Cognition-enhancing properties of Dimebon in a rat novel object recognition task are unlikely to be associated with acetylcholinesterase inhibition or N-methyl-d-aspartate receptor antagonism. J Pharmacol Exp Ther 333(3):748–757. doi:10.1124/jpet.109.164491

    Article  CAS  PubMed  Google Scholar 

  13. Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO (2003) Mitochondria as a target for neurotoxins and neuroprotective agents. Ann N Y Acad Sci 993:334–344, discussion 345-339

    Article  CAS  PubMed  Google Scholar 

  14. Shevtzova EF, Kireeva EG, Bachurin SO (2001) Effect of beta-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria. Bull Exp Biol Med 132(6):1173–1176

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Hedskog L, Petersen CA, Winblad B, Ankarcrona M (2010) Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death. J Alzheimers Dis 21(2):389–402. doi:10.3233/JAD-2010-100174

    PubMed  Google Scholar 

  16. Eckert SH, Eckmann J, Renner K, Eckert GP, Leuner K, Muller WE (2012) Dimebon ameliorates amyloid-beta induced impairments of mitochondrial form and function. J Alzheimers Dis 31(1):21–32. doi:10.3233/JAD-2012-120310

    CAS  PubMed  Google Scholar 

  17. Shevtsova EF, Vinogradova DV, Kireeva EG, Reddy VP, Aliev G, Bachurin SO (2014) Dimebon attenuates the Abeta-induced mitochondrial permeabilization. Curr Alzheimer Res 11(5):422–429

    Article  CAS  PubMed  Google Scholar 

  18. Bachurin SO, Ustyugov AA, Peters O, Shelkovnikova TA, Buchman VL, Ninkina NN (2009) Hindering of proteinopathy-induced neurodegeneration as a new mechanism of action for neuroprotectors and cognition enhancing compounds. Doklady 428:235–238

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita M, Nonaka T, Arai T, Kametani F, Buchman VL, Ninkina N, Bachurin SO, Akiyama H et al (2009) Methylene blue and Dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett 583(14):2419–2424

    Article  CAS  PubMed  Google Scholar 

  20. Bachurin SO, Shelkovnikova TA, Ustyugov AA, Peters O, Khritankova I, Afanasieva MA, Tarasova TV, Alentov II et al (2012) Dimebon slows progression of proteinopathy in gamma-synuclein transgenic mice. Neurotox Res 22(1):33–42. doi:10.1007/s12640-011-9299-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ustyugov AA, Shelkovnikova TA, Kokhan VS, Khritankova IV, Peters O, Buchman VL, Bachurin SO, Ninkina NN (2012) Dimebon reduces the levels of aggregated amyloidogenic protein forms in detergent-insoluble fractions in vivo. Bull Exp Biol Med 152(6):731–733

    Article  CAS  PubMed  Google Scholar 

  22. Perez SE, Nadeem M, Sadleir KR, Matras J, Kelley CM, Counts SE, Vassar R, Mufson EJ (2012) Dimebon alters hippocampal amyloid pathology in 3xTg-AD mice. Int J Physiol Pathophysiol Pharmacol 4(3):115–127

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Peters OM, Connor-Robson N, Sokolov VB, Aksinenko AY, Kukharsky MS, Bachurin SO, Ninkina N, Buchman VL (2013) Chronic administration of Dimebon ameliorates pathology in TauP301S transgenic mice. J Alzheimers Dis 33(4):1041–1049. doi:10.3233/JAD-2012-121732

    CAS  PubMed  Google Scholar 

  24. Bharadwaj PR, Verdile G, Barr RK, Gupta V, Steele JW, Lachenmayer ML, Yue Z, Ehrlich ME et al (2012) Latrepirdine (Dimebon) enhances autophagy and reduces intracellular GFP-Abeta42 levels in yeast. J Alzheimers Dis 32(4):949–967. doi:10.3233/JAD-2012-120178

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Khritankova IV, Kukharskiy MS, Lytkina OA, Bachurin SO, Shorning BY (2012) Dimebon activates autophagosome components in human neuroblastoma SH-SY5Y cells. Doklady 446:251–253. doi:10.1134/S1607672912050079

    Article  CAS  PubMed  Google Scholar 

  26. Steele JW, Ju S, Lachenmayer ML, Liken J, Stock A, Kim SH, Delgado LM, Alfaro IE et al (2013) Latrepirdine stimulates autophagy and reduces accumulation of alpha-synuclein in cells and in mouse brain. Mol Psychiatry 18(8):882–888. doi:10.1038/mp.2012.115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Steele JW, Lachenmayer ML, Ju S, Stock A, Liken J, Kim SH, Delgado LM, Alfaro IE et al (2013) Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry 18(8):889–897. doi:10.1038/mp.2012.106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Steele JW, Gandy S (2013) Latrepirdine (Dimebon(R)), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy 9(4):617–618. doi:10.4161/auto.23487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Vignisse J, Steinbusch HW, Bolkunov A, Nunes J, Santos AI, Grandfils C, Bachurin S, Strekalova T (2011) Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice. Prog Neuropsychopharmacol Biol Psychiatry 35(2):510–522. doi:10.1016/j.pnpbp.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Egea J, Romero A, Parada E, Leon R, Dal-Cim T, Lopez MG (2014) Neuroprotective effect of Dimebon against ischemic neuronal damage. Neuroscience 267:11–21. doi:10.1016/j.neuroscience.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  31. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi:10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  32. Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY et al (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5:4824. doi:10.1038/ncomms5824

    Article  CAS  PubMed  Google Scholar 

  33. Davidson Y, Kelley T, Mackenzie IR, Pickering-Brown S, Du Plessis D, Neary D, Snowden JS, Mann DM (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113(5):521–533. doi:10.1007/s00401-006-0189-y

    Article  CAS  PubMed  Google Scholar 

  34. Pesiridis GS, Lee VM, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18(R2):R156–R162. doi:10.1093/hmg/ddp303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sridharan S, Jain K, Basu A (2011) Regulation of autophagy by kinases. Cancers 3(2):2630–2654. doi:10.3390/cancers3022630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F (2007) Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem 282(9):6763–6772. doi:10.1074/jbc.M609876200

    Article  CAS  PubMed  Google Scholar 

  37. Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR (1998) Induction of cyclooxygenase-2 by the activated MEKK1 → SEK1/MKK4 → p38 mitogen-activated protein kinase pathway. J Biol Chem 273(21):12901–12908

    Article  CAS  PubMed  Google Scholar 

  38. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA et al (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci U S A 93(15):7464–7469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Takenaka K, Moriguchi T, Nishida E (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280(5363):599–602

    Article  CAS  PubMed  Google Scholar 

  40. Morooka T, Nishida E (1998) Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem 273(38):24285–24288

    Article  CAS  PubMed  Google Scholar 

  41. Singh SB, Ornatowski W, Vergne I, Naylor J, Delgado M, Roberts E, Ponpuak M, Master S et al (2010) Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 12(12):1154–1165. doi:10.1038/ncb2119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sabbagh MN, Shill HA (2010) Latrepirdine, a potential novel treatment for Alzheimer’s disease and Huntington’s chorea. Curr Opin Investig Drugs 11(1):80–91

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Morozova MA, Beniashvili AG, Lepilkina TA, Rupchev GE (2012) Double-blind placebo-controlled randomized efficacy and safety trial of add-on treatment of Dimebon plus risperidone in schizophrenic patients during transition from acute psychotic episode to remission. Psychiatr Danub 24(2):159–166

    PubMed  Google Scholar 

  44. Ninkina N, Peters O, Millership S, Salem H, van der Putten H, Buchman VL (2009) Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Hum Mol Genet 18(10):1779–1794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739(2-3):198–210. doi:10.1016/j.bbadis.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  46. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22(21):9340–9351

    CAS  PubMed  Google Scholar 

  47. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. doi:10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  48. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  49. Bachurin SO, Mikhaleva LM, Grigoriev VV, Koroleva IV, Kinzirskii AS (2011) Geroprotective properties of Dimebon: morphological characterization organs and tissues of mice after a long-term treatment. Éksp Klin Farmakol 74(3):32–34 (in Russian)

    CAS  Google Scholar 

  50. Bronovitsky EV, Deykin AV, Ermolkevich TG, Elyakov AB, Fedorov EN, Sadchikova ER, Goldman IL, Ovchinnikov RK et al (2014) Gamma-carboline inhibits neurodegenerative process in a transgenic model of amyotrophic lateral sclerosis. Dokl Biochem Biophys (in Russian), submitted manuscript

  51. Coughlan K, Mitchem M, Hogg M, Prehn JH (2014) “Preconditioning” with latrepirdine, an adenosine 5′-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1G93A mice. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2014.09.022

    PubMed  Google Scholar 

  52. Zakaryan RP, Gehring H (2006) Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein. J Mol Biol 363(1):27–38. doi:10.1016/j.jmb.2006.08.018

    Article  CAS  PubMed  Google Scholar 

  53. Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H, Ustyugov AA, Bachurin SO, Ermolkevich TG et al (2013) Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem 288(35):25266–25274. doi:10.1074/jbc.M113.492017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231. doi:10.1016/j.bbadis.2013.09.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Crompton M, Virji S, Doyle V, Johnson N, Ward JM (1999) The mitochondrial permeability transition pore. Biochem Soc Symp 66:167–179

    Article  CAS  PubMed  Google Scholar 

  56. Naga KK, Geddes JW (2011) Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release. Neuromol Med 13(1):31–36. doi:10.1007/s12017-010-8130-x

    Article  CAS  Google Scholar 

  57. Bernales S, Wagner S, Protter A, Hung D (2008) Dimebon induces neurite outgrowth and mitochondrial statilizion. Program No. 543.29/S12. Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, Online

    Google Scholar 

  58. Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2013) Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev 134(1-2):1–9. doi:10.1016/j.mad.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  59. Krestinina O, Azarashvili T, Baburina Y, Galvita A, Grachev D, Stricker R, Reiser G (2014) In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. Neurochem Int. doi:10.1016/j.neuint.2014.09.008

    PubMed  Google Scholar 

  60. Shevtsova E, Grigoriev V, Kireeva E, Koroleva I, Bachurin S (2006) Dimebon as mitoprotective and antiaging drug. Biochim Biophys Acta (Suppl S) Abs (P2.3.4)

  61. Bokde AL, Pietrini P, Ibanez V, Furey ML, Alexander GE, Graff-Radford NR, Rapoport SI, Schapiro MB et al (2001) The effect of brain atrophy on cerebral hypometabolism in the visual variant of Alzheimer disease. Arch Neurol 58(3):480–486

    Article  CAS  PubMed  Google Scholar 

  62. Hawkins RA (1984) Brain energy metabolism and function during hepatic encephalopathy. Eur J Clin Investig 14(5):313–314

    Article  CAS  Google Scholar 

  63. Day M, Chandran P, Luo F, Rustay NR, Markosyan S, LeBlond D, Fox GB (2011) Latrepirdine increases cerebral glucose utilization in aged mice as measured by [18F]-fluorodeoxyglucose positron emission tomography. Neuroscience 189:299–304. doi:10.1016/j.neuroscience.2011.05.032

    Article  CAS  PubMed  Google Scholar 

  64. Weisova P, Alvarez SP, Kilbride SM, Anilkumar U, Baumann B, Jordan J, Bernas T, Huber HJ et al (2013) Latrepirdine is a potent activator of AMP-activated protein kinase and reduces neuronal excitability. Transl Psychiatry 3:e317. doi:10.1038/tp.2013.92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JM, Becker GL, Huntington P et al (2010) Discovery of a proneurogenic, neuroprotective chemical. Cell 142(1):39–51. doi:10.1016/j.cell.2010.06.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Russian Scientific Foundation (Nos. 14-23-00160 and 14-14-01138).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Ustyugov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustyugov, A., Shevtsova, E. & Bachurin, S. Novel Sites of Neuroprotective Action of Dimebon (Latrepirdine). Mol Neurobiol 52, 970–978 (2015). https://doi.org/10.1007/s12035-015-9249-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9249-4

Keywords

Navigation