Skip to main content
Log in

Mitochondrial Aspartate/Glutamate Carrier SLC25A12 and Autism Spectrum Disorder: a Meta-Analysis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction has been reported to be involved in the pathophysiology of autism spectrum disorder (ASD). Studies investigating the possible association between ASD and polymorphism in SLC25A12, which encodes the mitochondrial aspartate/glutamate carrier, have yielded inconsistent results. We conducted a systematic review and meta-analysis of such studies to elucidate if and which SLC25A12 single nucleotide polymorphisms (SNPs) are associated with ASD. We searched PubMed, Ovid, Web of Science, and ERIC databases through September 20th, 2014. Odds ratios (ORs) were aggregated using random effect models. Sensitivity analyses were conducted based on study design (family-based or case-control). Fifteen out of 79 non-duplicate records were retained for qualitative synthesis. We pooled 10 datasets from 9 studies with 2001 families, 735 individuals with ASD and 632 typically developing (TD) individuals for the meta-analysis of rs2292813, as well as 11 datasets from 10 studies with 2016 families, 852 individuals with ASD and 1058 TD individuals for the meta-analysis of rs2056202. We found a statistically significant association between ASD and variant in rs2292813 (OR = 1.190, 95 % CI 1.052–1.346, P = 0.006) as well as in rs2056202 (OR = 1.206, 95 % CI 1.035–1.405, P = 0.016). Sensitivity analyses including only studies with family-based design demonstrated significant association between ASD and polymorphism in rs2292813 (OR = 1.216, 95 % CI 1.075–1.376, P = 0.002) and rs2056202 (OR = 1.267, 95 % CI 1.041–1.542, P = 0.018). In contrast, sensitivity analyses including case-control design studies only failed to find a significant association. Further research on the role of SLC25A12 and ASD may pave the way for potential innovative therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Pychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington, VA, USA

    Book  Google Scholar 

  2. Aoki Y, Yahata N, Watanabe T, Takano Y, Kawakubo Y, Kuwabara H, Iwashiro N, Natsubori T et al (2014) Oxytocin improves behavioural and neural deficits in inferring others' social emotions in autism. Brain 137(Pt 11):3073–3086

    Article  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention (2012) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ 61(3):1–19

    Google Scholar 

  4. Frazier TW, Thompson L, Youngstrom EA, Law P, Hardan AY, Eng C, Morris N (2014) A twin study of heritable and shared environmental contributions to autism. J Autism Dev Disord 44(8):2013–2025

    Article  PubMed  PubMed Central  Google Scholar 

  5. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F, Plomin R, Ronald A (2011) Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5 %, 2.5 %, and 1 %). Arch Gen Psychiatry 68(11):1113–1121

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lai M-C, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383(9920):896–910

    Article  PubMed  Google Scholar 

  8. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. LoParo D, Waldman ID (2014) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry. doi:10.1038/mp.2014.77

    PubMed  Google Scholar 

  10. Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33(11):2551–2565

    Article  CAS  PubMed  Google Scholar 

  11. Munakata K, Iwamoto K, Bundo M, Kato T (2005) Mitochondrial DNA 3243A > G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 57(5):525–532

    Article  CAS  PubMed  Google Scholar 

  12. Rossignol DA, Frye RE (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17(3):290–314

    Article  CAS  PubMed  Google Scholar 

  13. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13(5):293–307

    CAS  PubMed  Google Scholar 

  14. Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN (2010) Mitochondrial dysfunction in autism. JAMA 304(21):2389–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuwabara H, Yamasue H, Koike S, Inoue H, Kawakubo Y, Kuroda M, Takano Y, Iwashiro N et al (2013) Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One 8(9):e73814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aoki Y, Kasai K, Yamasue H (2012) Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry 2:e69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aoki Y, Abe O, Yahata N, Kuwabara H, Natsubori T, Iwashiro N, Takano Y, Inoue H et al (2012) Absence of age-related prefrontal NAA change in adults with autism spectrum disorders. Transl Psychiatry 2:e178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aoki Y, Watanabe T, Abe O, Kuwabara H, Yahata N, Takano Y, Iwashiro N, Natsubori T et al (2014) Oxytocin's neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial. Mol Psychiatry. doi:10.1038/mp.2014.74

    PubMed Central  Google Scholar 

  19. Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS (2014) Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry 71(6):665–671

    Article  PubMed  PubMed Central  Google Scholar 

  20. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, O'Hearn S, Levy S et al (2014) Progressive increase in mtDNA 3243A > G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci U S A 111(38):E4033–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Napolioni V, Persico AM, Porcelli V, Palmieri L (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44(1):83–92

    Article  CAS  PubMed  Google Scholar 

  22. Silverman JM, Buxbaum JD, Ramoz N, Schmeidler J, Reichenberg A, Hollander E, Angelo G, Smith CJ et al (2008) Autism-related routines and rituals associated with a mitochondrial aspartate/glutamate carrier SLC25A12 polymorphism. Am J Med Genet B Neuropsychiatr Genet 147(3):408–410

    Article  PubMed  Google Scholar 

  23. Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T, Matsuzaki H, Miyachi T et al (2012) Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 3(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  24. del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273(36):23327–23334

    Article  PubMed  Google Scholar 

  25. Blasi F, Bacchelli E, Carone S, Toma C, Monaco AP, Bailey AJ, Maestrini E, International Molecular Genetic Study of Autism Consortium (IMGSAC) (2006) SLC25A12 and CMYA3 gene variants are not associated with autism in the IMGSAC multiplex family sample. Eur J Hum Genet 14(1):123–126

    CAS  PubMed  Google Scholar 

  26. Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, Buxbaum JD (2004) Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry 161(4):662–669

    Article  PubMed  Google Scholar 

  27. Segurado R, Conroy J, Meally E, Fitzgerald M, Gill M, Gallagher L (2005) Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 162(11):2182–2184

    Article  PubMed  Google Scholar 

  28. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of reporting of meta-analyses. Lancet 354(9193):1896–1900

    Article  CAS  PubMed  Google Scholar 

  29. Higgins J, Green S (2008) Cochrane handbook for systematic reviews of interventions. Wiley, Chichester, UK

    Book  Google Scholar 

  30. Kazeem GR, Farrall M (2005) Integrating case-control and TDT studies. Ann Hum Genet 69(Pt3):329–335

    Article  CAS  PubMed  Google Scholar 

  31. Brandys MK, Kas MJ, van Elburg AA, Ophoff R, Slof-Op't Landt MC, Middeldorp CM, Boomsma DI, van Furth EF et al (2013) The Val66Met polymorphism of the BDNF gene in anorexia nervosa: new data and a meta-analysis. World J Biol Psychiatry 14(6):441–451

    Article  PubMed  Google Scholar 

  32. Kim SJ, Silva RM, Flores CG, Jacob S, Guter S, Valcante G, Zaytoun AM, Cook EH et al (2011) A quantitative association study of SLC25A12 and restricted repetitive behavior traits in autism spectrum disorders. Mol Autism 2(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, Hager J, Rousseau F et al (2010) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15(1):38–52

    Article  CAS  PubMed  Google Scholar 

  34. Ramoz N, Cai G, Reichert JG, Silverman JM, Buxbaum JD (2008) An analysis of candidate autism loci on chromosome 2q24-q33: evidence for association to the STK39 gene. Am J Med Genet B Neuropsychiatr Genet 147B(7):1152–1158

    Article  PubMed  Google Scholar 

  35. Carayol J, Schellenberg GD, Tores F, Hager J, Ziegler A, Dawson G (2010) Assessing the impact of a combined analysis of four common low-risk genetic variants on autism risk. Mol Autism 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aoki Y, Aoki A, Suwa H (2012) Reduction of N-acetylaspartate in the medial prefrontal cortex correlated with symptom severity in obsessive-compulsive disorder: meta-analyses of 1H-MRS studies. Transl Psychiatry 2:1–10

    Google Scholar 

  38. Aoki Y, Inokuchi R, Suwa H, Aoki A (2013) Age-related change of neurochemical abnormality in attention-deficit hyperactivity disorder: a meta-analysis. Neurosci Biobehav Rev 37(8):1692–1701

    Article  CAS  PubMed  Google Scholar 

  39. Aoki Y, Abe O, Nippashi Y, Yamasue H (2013) Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism 4(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aoki Y, Inokuchi R, Gunshin M, Yahagi N, Suwa H (2012) Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. J Neurol Neurosurg Psychiatry 83(9):870–876

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chien WH, Wu YY, Gau SS, Huang YS, Soong WT, Chiu YN, Chen CH (2010) Association study of the SLC25A12 gene and autism in Han Chinese in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 34(1):189–192

    Article  CAS  PubMed  Google Scholar 

  42. Correia C, Coutinho AM, Diogo L, Grazina M, Marques C, Miguel T, Ataíde A, Almeida J et al (2006) Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord 36(8):1137–1140

    Article  PubMed  Google Scholar 

  43. Durdiakova J, Warrier V, Baron-Cohen S, Chakrabarti B (2014) Single nucleotide polymorphism rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol Autism 5(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lepagnol-Bestel AM, Maussion G, Boda B, Cardona A, Iwayama Y, Delezoide AL, Moalic JM, Muller D et al (2008) SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry 13(4):385–397

    Article  CAS  PubMed  Google Scholar 

  45. Prandini P, Pasquali A, Malerba G, Marostica A, Zusi C, Xumerle L, Muglia P, Da Ros L et al (2012) The association of rs4307059 and rs35678 markers with autism spectrum disorders is replicated in Italian families. Psychiatr Genet 22(4):177–181

    Article  CAS  PubMed  Google Scholar 

  46. Rabionet R, McCauley JL, Jaworski JM, Ashley-Koch AE, Martin ER, Sutcliffe JS, Haines JL, DeLong GR et al (2006) Lack of association between autism and SLC25A12. Am J Psychiatry 163(5):929–931

    Article  PubMed  Google Scholar 

  47. Turunen JA, Rehnstrom K, Kilpinen H, Kuokkanen M, Kempas E, Ylisaukko-Oja T (2008) Mitochondrial aspartate/glutamate carrier SLC25A12 gene is associated with autism. Autism Res 1(3):189–192

    Article  PubMed  Google Scholar 

  48. Yan Z-H, Xing J, Luo H-Y, Yang T-S, Sakamoto Y, Nanba E (2006) Association between SLC25A12 and SCN2A2 gene polymorphisms and autism. J Jilin Univ Med Ed 32:313–315

    CAS  Google Scholar 

  49. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M et al (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459(7246):528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weiss LA, Arking DE, Gene Discovery Project of Johns H, the Autism C, Daly MJ, Chakravarti A (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature 461(7265):802–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wittkowski KM, Sonakya V, Bigio B, Tonn MK, Shic F, Ascano M, Nasca C, Gold-Von SG (2014) A novel computational biostatistics approach implies impaired dephosphorylation of growth factor receptors as associated with severity of autism. Transl Psychiatry 4:e354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baslow MH (2011) The vertebrate brain, evidence of its modular organization and operating system: insights into the brain’s basic units of structure, function, and operation and how they influence neuronal signaling and behavior. Front Behav Neurosci 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sager T, Hansen A, Laursen H (2000) Correlation between N-acetylaspartate levels and histopathologic changes in cortical infarcts of mice after middle cerebral artery occlusion. J Cereb Blood Flow Metab 20(5):780–788

    Article  CAS  PubMed  Google Scholar 

  54. Moffett JR, ROSS B, Arun P, Madhavarao CN, Namboodiri AMA (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81(2):89–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamada K, Takeuchi F, Houkin K, Kitagawa M, Kuriki S, Ogata A, Tashiro K, Koyanagi I et al (2001) Reversible brain dysfunction in MELAS: MEG, and (1)H MRS analysis. J Neurol Neurosurg Psychiatry 70(5):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Satrústegui J, Contreras L, Ramos M, Marmol P, del Arco A, Saheki T, Pardo B (2007) Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca(2+) signaling in neuronal mitochondria. J Neurosci Res 85(15):3359–3366

    Article  PubMed  Google Scholar 

  57. Jalil MA, Begum L, Contreras L, Pardo B, Iijima M, Li MX, Ramos M, Marmol P et al (2005) Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J Biol Chem 280(35):31333–31339

    Article  CAS  PubMed  Google Scholar 

  58. Ramos M, Pardo B, Llorente-Folch I, Saheki T, Del Arco A, Satrustegui J (2011) Deficiency of the mitochondrial transporter of aspartate/glutamate aralar/AGC1 causes hypomyelination and neuronal defects unrelated to myelin deficits in mouse brain. J Neurosci Res 89(12):2008–2017

    Article  CAS  PubMed  Google Scholar 

  59. Falk MJ, Li D, Gai X, McCormick E, Place E, Lasorsa FM, Otieno FG, Hou C et al (2014) AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N-acetylaspartate. JIMD Rep 14:77–85

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tebartz van Elst L, Maier S, Fangmeier T, Endres D, Mueller GT, Nickel K, Ebert D, Lange T et al (2014) Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry. doi:10.1038/mp.2014.62

    PubMed  Google Scholar 

  61. Horder J, Lavender T, Mendez MA, O'Gorman R, Daly E, Craig MC, Lythgoe DJ, Barker GJ et al (2013) Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [(1)H]MRS study. Transl Psychiatry 3:e279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McGinnis R, Shifman S, Darvasi A (2002) Power and efficiency of the TDT and case-control design for association scans. Behav Genet 32(2):135–144

    Article  PubMed  Google Scholar 

Download references

Author contributions

YA conceived the study design. YA and SC have independently screened and extracted the data. YA and SC wrote the paper.

Conflict of Interest

Dr. Samuele Cortese has received royalties from Aargon Healthcare Italy.

Dr. Yuta Aoki declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Aoki.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, Y., Cortese, S. Mitochondrial Aspartate/Glutamate Carrier SLC25A12 and Autism Spectrum Disorder: a Meta-Analysis. Mol Neurobiol 53, 1579–1588 (2016). https://doi.org/10.1007/s12035-015-9116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9116-3

Keywords

Navigation