Skip to main content

Advertisement

Log in

Repairing Neural Injuries Using Human Umbilical Cord Blood

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harder F, Henschler R, Junghahn I, Lamers MC, Muller AM (2002) Human hematopoiesis in murine embryos after injecting human cord blood-derived hematopoietic stem cells into murine blastocysts. Blood 99(2):719–721

    Article  PubMed  CAS  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  3. Flynn A, Barry F, O’Brien T (2007) UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9(8):717–726

    Article  PubMed  CAS  Google Scholar 

  4. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  PubMed  CAS  Google Scholar 

  5. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  PubMed  CAS  Google Scholar 

  6. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178

    Article  PubMed  CAS  Google Scholar 

  7. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    Article  PubMed  Google Scholar 

  8. Gluckman E (2009) Ten years of cord blood transplantation: from bench to bedside. Br J Haematol 147(2):192–199

    Article  PubMed  CAS  Google Scholar 

  9. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242

    Article  PubMed  CAS  Google Scholar 

  10. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    Article  PubMed  CAS  Google Scholar 

  11. Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312(13):2454–2464

    Article  PubMed  CAS  Google Scholar 

  12. McGuckin C, Jurga M, Ali H, Strbad M, Forraz N (2008) Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc 3(6):1046–1055

    Article  PubMed  CAS  Google Scholar 

  13. Forraz N, McGuckin CP (2011) The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 44(Suppl 1):60–69

    Article  PubMed  Google Scholar 

  14. Lee MW, Jang IK, Yoo KH, Sung KW, Koo HH (2010) Stem and progenitor cells in human umbilical cord blood. Int J Hematol 92(1):45–51

    Article  PubMed  Google Scholar 

  15. Arien-Zakay H, Lazarovici P, Nagler A (2010) Tissue regeneration potential in human umbilical cord blood. Best Pract Res Clin Haematol 23(2):291–303

    Article  PubMed  Google Scholar 

  16. Arien-Zakay H, Lecht S, Nagler A, Lazarovici P (2010) Human umbilical cord blood stem cells: rational for use as a neuroprotectant in ischemic brain disease. Int J Mol Sci 11(9):3513–3528

    Article  PubMed  CAS  Google Scholar 

  17. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115(Pt 10):2131–2138

    PubMed  CAS  Google Scholar 

  18. Buzanska L, Jurga M, Domanska-Janik K (2006) Neuronal differentiation of human umbilical cord blood neural stem-like cell line. Neurodegener Dis 3(1–2):19–26

    Article  PubMed  Google Scholar 

  19. Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domanska-Janik K (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15(3):391–406

    Article  PubMed  CAS  Google Scholar 

  20. El-Badri NS, Hakki A, Saporta S, Liang X, Madhusodanan S, Willing AE, Sanberg CD, Sanberg PR (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15(4):497–506

    Article  PubMed  CAS  Google Scholar 

  21. Jeong JA, Gang EJ, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H (2004) Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 15(11):1731–1734

    Article  PubMed  CAS  Google Scholar 

  22. Zwart I, Hill AJ, Girdlestone J, Manca MF, Navarrete R, Navarrete C, Jen LS (2008) Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli. J Neurosci Res 86(9):1902–1915

    Article  PubMed  CAS  Google Scholar 

  23. Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS (2008) Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res 86(10):2168–2178

    Article  PubMed  CAS  Google Scholar 

  24. Arien-Zakay H, Nagler A, Galski H, Lazarovici P (2007) Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. J Mol Neurosci 32(3):179–191

    Article  PubMed  CAS  Google Scholar 

  25. Chen N, Kamath S, Newcomb J, Hudson J, Garbuzova-Davis S, Bickford P, Davis-Sanberg C, Sanberg P, Zigova T, Willing A (2007) Trophic factor induction of human umbilical cord blood cells in vitro and in vivo. J Neural Eng 4(2):130–145

    Article  PubMed  Google Scholar 

  26. Arien-Zakay H, Lecht S, Bercu MM, Amariglio N, Rechavi G, Galski H, Lazarovici P, Nagler A (2009) Interferon-gamma-induced neuronal differentiation of human umbilical cord blood-derived progenitors. Leukemia 23(10):1790–1800

    Article  PubMed  CAS  Google Scholar 

  27. Szymczak P, Wojcik-Stanaszek L, Sypecka J, Sokolowska A, Zalewska T (2010) Effect of matrix metalloproteinases inhibition on the proliferation and differentiation of HUCB-NSCs cultured in the presence of adhesive substrates. Acta Neurobiol Exp (Wars) 70(4):325–336

    Google Scholar 

  28. Ali H, Forraz N, McGuckin CP, Jurga M, Lindsay S, Ip BK, Trevelyan A, Basford C, Habibollah S, Ahmad S et al (2012) In vitro modelling of cortical neurogenesis by sequential induction of human umbilical cord blood stem cells. Stem Cell Rev 8(1):210–223

    Article  PubMed  CAS  Google Scholar 

  29. Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11(3):265–274

    PubMed  Google Scholar 

  30. Coenen M, Kogler G, Wernet P, Brustle O (2005) Transplantation of human umbilical cord blood-derived adherent progenitors into the developing rodent brain. J Neuropathol Exp Neurol 64(8):681–688

    Article  PubMed  CAS  Google Scholar 

  31. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7(11):581–588

    Article  PubMed  CAS  Google Scholar 

  32. Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, Kim SU (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75(4):573–584

    Article  PubMed  CAS  Google Scholar 

  33. Sypecka J, Dragun-Szymczak P, Zalewska T, Domanska-Janik K (2009) Laminin promotes oligogliogenesis and increases MMPs activity in human neural stem cells of HUCB-NSC line. Acta Neurobiol Exp (Wars) 69(1):37–45

    Google Scholar 

  34. Tanabe Y, Tajima F, Nakamura Y, Shibasaki E, Wakejima M, Shimomura T, Murai R, Murawaki Y, Hashiguchi K, Kanbe T et al (2004) Analyses to clarify rich fractions in hepatic progenitor cells from human umbilical cord blood and cell fusion. Biochem Biophys Res Commun 324(2):711–718

    Article  PubMed  CAS  Google Scholar 

  35. Ishikawa F, Shimazu H, Shultz LD, Fukata M, Nakamura R, Lyons B, Shimoda K, Shimoda S, Kanemaru T, Nakamura K et al (2006) Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J 20(7):950–952

    Article  PubMed  CAS  Google Scholar 

  36. Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Roh W, Hwang SJ, Ko HJ, Huh YM et al (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248

    Article  PubMed  CAS  Google Scholar 

  37. Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, Kruse F, Kogler G, Wernet P, Hartung HP et al (2012) Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain 135(Pt 2):431–446

    Article  PubMed  Google Scholar 

  38. Ali H, Bahbahani H (2010) Umbilical cord blood stem cells—potential therapeutic tool for neural injuries and disorders. Acta Neurobiol Exp (Wars) 70(3):316–324

    Google Scholar 

  39. Rosenkranz K, Meier C (2011) Umbilical cord blood cell transplantation after brain ischemia—from recovery of function to cellular mechanisms. Ann Anat 193(4):371–379

    Article  PubMed  Google Scholar 

  40. Trapp T, Kogler G, El-Khattouti A, Sorg RV, Besselmann M, Focking M, Buhrle CP, Trompeter I, Fischer JC, Wernet P (2008) Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury. J Biol Chem 283(47):32244–32253

    Article  PubMed  CAS  Google Scholar 

  41. Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR (2005) Stroke-induced migration of human umbilical cord blood cells: time course and cytokines. Stem Cells Dev 14(5):576–586

    Article  PubMed  CAS  Google Scholar 

  42. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32(11):2682–2688

    Article  PubMed  CAS  Google Scholar 

  43. Xiao J, Nan Z, Motooka Y, Low WC (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14(6):722–733

    Article  PubMed  CAS  Google Scholar 

  44. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, Hart C, Sanchez-Ramos J, Sanberg PR (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73(3):296–307

    Article  PubMed  CAS  Google Scholar 

  45. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35(10):2385–2389

    Article  PubMed  Google Scholar 

  46. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581

    Article  PubMed  CAS  Google Scholar 

  47. Jiang L, Womble T, Saporta S, Chen N, Sanberg CD, Sanberg PR, Willing AE (2010) Human umbilical cord blood cells decrease microglial survival in vitro. Stem Cells Dev 19(2):221–228

    Article  PubMed  CAS  Google Scholar 

  48. Pimentel-Coelho PM, Magalhaes ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez-Otero R (2010) Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19(3):351–358

    Article  PubMed  Google Scholar 

  49. Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, Meier C (2012) Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res 348(3):429–438

    Article  PubMed  CAS  Google Scholar 

  50. Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T et al (2010) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14(4):914–921

    Article  PubMed  CAS  Google Scholar 

  51. Arien-Zakay H, Lecht S, Nagler A, Lazarovici P (2011) Neuroprotection by human umbilical cord blood-derived progenitors in ischemic brain injuries. Arch Ital Biol 149(2):233–245

    PubMed  Google Scholar 

  52. Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14(5):595–604

    Article  PubMed  CAS  Google Scholar 

  53. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199(1):191–200

    Article  PubMed  CAS  Google Scholar 

  54. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760

    Article  PubMed  CAS  Google Scholar 

  55. Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93(5):e51–e62

    Article  PubMed  Google Scholar 

  56. Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111(3):1302–1305

    Article  PubMed  CAS  Google Scholar 

  57. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM et al (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114(3):330–338

    PubMed  CAS  Google Scholar 

  58. Hu CH, Wu GF, Wang XQ, Yang YH, Du ZM, He XH, Xiang P (2006) Transplanted human umbilical cord blood mononuclear cells improve left ventricular function through angiogenesis in myocardial infarction. Chin Med J (Engl) 119(18):1499–1506

    CAS  Google Scholar 

  59. Kim BO, Tian H, Prasongsukarn K, Wu J, Angoulvant D, Wnendt S, Muhs A, Spitkovsky D, Li RK (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112(9 Suppl):I96–I104

    PubMed  Google Scholar 

  60. Arenillas JF, Sobrino T, Castillo J, Davalos A (2007) The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med 9(3):205–212

    Article  PubMed  Google Scholar 

  61. Park DH, Borlongan CV, Willing AE, Eve DJ, Cruz LE, Sanberg CD, Chung YG, Sanberg PR (2009) Human umbilical cord blood cell grafts for brain ischemia. Cell Transplant 18(9):985–998

    Article  PubMed  Google Scholar 

  62. Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ, Han ZC (2004) Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant 13(2):113–122

    PubMed  Google Scholar 

  63. Kao CH, Chen SH, Chio CC, Lin MT (2008) Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock 29(1):49–55

    PubMed  Google Scholar 

  64. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR (2003) Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 12(3):271–278

    Article  PubMed  CAS  Google Scholar 

  65. Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH (2011) Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 7(1):181–194

    Article  PubMed  Google Scholar 

  66. Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24(2):391–410

    Article  PubMed  Google Scholar 

  67. Chen CT, Foo NH, Liu WS, Chen SH (2008) Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatr Neonatol 49(3):77–83

    Article  PubMed  Google Scholar 

  68. Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS, Dinh DH (2008) Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem Res 33(1):134–149

    Article  PubMed  CAS  Google Scholar 

  69. Li X, Li H, Bi J, Chen Y, Jain S, Zhao Y (2012) Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun 419(1):110–116

    Article  PubMed  CAS  Google Scholar 

  70. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124

    Article  PubMed  Google Scholar 

  71. Ende N, Chen R, Ende-Harris D (2001) Human umbilical cord blood cells ameliorate Alzheimer’s disease in transgenic mice. J Med 32(3–4):241–247

    PubMed  CAS  Google Scholar 

  72. Nikolic WV, Hou H, Town T, Zhu Y, Giunta B, Sanberg CD, Zeng J, Luo D, Ehrhart J, Mori T et al (2008) Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Dev 17(3):423–439

    Article  PubMed  CAS  Google Scholar 

  73. Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T, Jin HK, Bae JS (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35

    Article  PubMed  CAS  Google Scholar 

  74. Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12(3):255–270

    Article  PubMed  CAS  Google Scholar 

  75. Habisch HJ, Janowski M, Binder D, Kuzma-Kozakiewicz M, Widmann A, Habich A, Schwalenstocker B, Hermann A, Brenner R, Lukomska B et al (2007) Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm 114(11):1395–1406

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Aisha Abdullah for the critical reading of the manuscript. This work was supported by the Ellison Medical Foundation (T.S.), an award from the Hirschl/Weill-Caulier Trust (T.S.), an R01-MH083680 grant from the NIH/NIMH (T.S.), National Program on Key Basic Research Project (2013CB945600) (Q.M.), and National Natural Science Foundation of China (31171313) (Q.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Sun or Quan-hong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Ma, Qh. Repairing Neural Injuries Using Human Umbilical Cord Blood. Mol Neurobiol 47, 938–945 (2013). https://doi.org/10.1007/s12035-012-8388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8388-0

Keywords

Navigation