Skip to main content

Advertisement

Log in

Influence of ZnO concentration on the optical and photocatalytic properties of Ni-doped ZnS/ZnO nanocomposite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalysts consisting of nickel-doped ZnS/ZnO core shell nanocomposites with varying concentrations of ZnO was synthesized through chemical precipitation method. The catalyst was deployed in photocatalytic degradation of indigo carmine dye as a model organic pollutant. Characterization of the samples was achieved through the use of X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, UV–vis spectroscopy and energy dispersive spectroscopy. The composites consist of wurtzite ZnO phase deposited on cubic ZnS. Optical absorption, crystallite sizes and photocatalytic degradation efficiency increased with increasing ZnO concentration. Bandgap values of ZnS also decreased appreciably with increase in ZnO concentration. Ni-doped ZnS/(0.5 M ZnO) was identified as the most efficient catalyst with 91% dye degradation efficiency at a rate of 15.38 × 10−3 min−1 in 180 min. Meanwhile, the pristine ZnS degraded 25% of the dye at the rate of 1.53 × 10−3 min−1 within the same time. The Ni-doped Zns/(0.5 M ZnO) was used to degrade the dye on the basis of influence of factors such as solution temperature, hydrogen peroxide (H2O2) and ethanol contents. Dye degradation increased with increase in temperature, but decreased with ethanol content. H2O2 content initially caused enhanced dye degradation but the efficiency decreased with higher H2O2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69

    Article  Google Scholar 

  2. Suzuki M, Ito T and Taga Y 2001 Appl. Phys. Lett. 78 3968

    Article  Google Scholar 

  3. Pouretedal H R, Eskandari H, Keshavarz M H and Semnan A 2009 Acta Chim. Slov. 56 353

    Google Scholar 

  4. Pouretedal H R, Norozi A, Keshavarz M H and Semnani A 2009 J. Hazard. Mater. 162 674

    Article  Google Scholar 

  5. Alivisatos A P 1996 Sci. 271 933

    Article  Google Scholar 

  6. Wang Z Q, Liu Z, Gong J F, Wang S and Yang S G 2011 Cryst. Eng. Comm. 13 6774

    Article  Google Scholar 

  7. Ma H, Han J, Fu Y, Song Y, Yu C and Dong X 2011 Appl. Catal. B: Environ. 102 417

    Article  Google Scholar 

  8. Fox M A and Dulay M T 1993 Chem. Rev. 93 341

    Article  Google Scholar 

  9. Litter M I 1999 Appl. Catal. B: Environ. 23 89

    Article  Google Scholar 

  10. Bashouti M, Salalha W, Brumer M, Zussman E and Lifshitz E 2006 Chem. Phys. Chem. 7 102

    Google Scholar 

  11. Marci G, Augugliaro V, Lopez-Munoz M J, Martin C, Palmisano L, Rives V and Venezia A M 2001 J. Phys. Chem. B 105 1033

    Article  Google Scholar 

  12. Fang X, Bando Y, Gautam U K, Zhai T, Zeng H, Xu X and Golberg D 2009 Crit. Rev. Solid State Mater. Sci. 34 190

    Article  Google Scholar 

  13. Lai C H, Lu M Y and Chen L J 2012 J. Mater. Chem. 22 19

    Article  Google Scholar 

  14. Chen M, Hu L, Xu J, Liao M, Wu L and Fang X 2011 Small 7 2449

    Google Scholar 

  15. Huang C M, Chen L C, Pan G T, Yang T C, Chang W S and Cheng K W 2009 Mater. Chem. Phys. 117 156

    Article  Google Scholar 

  16. Navaneethan M, Archana J, Nisha K D, Hayakawa Y, Ponnusamy S and Muthamizhchelvan C 2010 J. Alloy Compd. 506 249

    Article  Google Scholar 

  17. Singh A K 2010 Adv. Power Technol. 21 609

    Article  Google Scholar 

  18. Devi B R, Raveendran R and Vaidyan A V 2007 Pramana J. Phys. 68 679

    Article  Google Scholar 

  19. Staurt B 2004 Infrared spectroscopy: fundamentals and applications (New York: Wiley) p 45

    Book  Google Scholar 

  20. Brus L E 1984 J. Chem. Phys. 80 4403

    Article  Google Scholar 

  21. Kuznetsov V N and Serpone N 2006 J. Phys. Chem. B 110 25203

    Article  Google Scholar 

  22. Carp O, Huisman C L and Reller A 2004 Prog. Solid State Chem. 32 33

    Article  Google Scholar 

  23. Zhang Y, Tang Z R, Fu X and Xu Y J 2011 ACS Nano 5 7426

    Article  Google Scholar 

  24. Yu X L, Song J G, Fu Y S, Xie Y, Song X, Sun J and Du X W 2010 J. Phys. Chem. C 114 2380

    Article  Google Scholar 

  25. Sakthivel S and Kisch H 2003 Angew. Chem. Int. Ed. 42 4908

    Article  Google Scholar 

  26. Serpone N, Lawless D and Khairutdinov R 1995 J. Phys. Chem. 99 16646

    Article  Google Scholar 

  27. Sunitha S, Rao A N and Karthikeyan J 2015 Orient. J. Chem. 31 107

    Article  Google Scholar 

  28. Bose S, Galande C, Chockalingam S P, Banerjee R, Raychaudhuri P and Ayyub P 2009 J. Phys.-Condens. Mat. 21 205702

    Article  Google Scholar 

  29. Prado A G, Bolzon L B, Pedroso C P, Moura A O and Costa L L 2008 Appl. Catal. B: Environ. 82 219

    Article  Google Scholar 

  30. Aguedach A, Brosillon S, Morvan J and Lhadi E K 2005 Appl. Catal. B: Environ. 57 55

    Article  Google Scholar 

  31. Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S and Zong H 2000 Chemosphere 41 303

    Article  Google Scholar 

  32. Qourzal S, Tamimi M, Assabbane A and Ait-Ichou Y 2007 C.R. Chim. 10 1187

    Article  Google Scholar 

  33. Saien J, Delavari H and Salman A R 2010 J. Hazard. Mater. 177 1031

    Article  Google Scholar 

  34. Alahiane S, Qourzal S, Ouardi M E, Abaamrane A and Assabbane A 2014 Am. J. Anal. Chem. 5 445

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to the Faculty of Science, University of Johannesburg, and Department of Applied Chemistry-Centre for Nanomaterials Science Research, National Research Foundation (TTK14052167682) and Water Research Commission of South Africa, for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W W ANKU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ANKU, W.W., OPPONG, S.O.B., SHUKLA, S.K. et al. Influence of ZnO concentration on the optical and photocatalytic properties of Ni-doped ZnS/ZnO nanocomposite. Bull Mater Sci 39, 1745–1752 (2016). https://doi.org/10.1007/s12034-016-1310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1310-z

Keywords

Navigation