Skip to main content
Log in

Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg reactants through microwave-assisted self-propagating high-temperature synthesis method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this research work, microwave-assisted self-propagating high-temperature synthesis (SHS) process was employed for the fabrication of titanium diboride (TiB2) compound from TiO2–B2O3–Mg mixtures. Thermodynamic evaluations of this system and its relevant subsystems revealed that TiB2–MgO composite powder can be easily produced by a SHS reaction. However, experimental results of a TiO2 : B2O3 : 5Mg mixture heated in a domestic oven showed the formation of some intermediate compounds such as Mg3B2O6, presumably due to some degree of Mg loss. The optimum amount of Mg in TiO2 : B2O3 : xMg mixtures, yielding the highest amount of TiB2 phase, was found to be around 7 mol, i.e., 40 mol% more than the stoichiometric amount. Experimental results revealed that a pure TiB2 compound could be obtained by leaching the unwanted by-products in an HCl acid solution. Scanning electron microscopic observations and Scherrer calculations showed that the produced TiB2 contains sub-micron (150–200 nm) particles, where each particle consists of a number of nanosized (32 nm) crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang H Y, Jiang Q C, Zhao Y Q, Zhao F, Ma B X and Wang Y 2004 Mater. Sci. Eng. A 372 109

    Article  Google Scholar 

  2. Tang W M, Zheng Z X, Wu Y C, Wang J M, Lu J and Liu J W 2006 Trans. Nonferrous Met. Soc. China 16 613

    Article  Google Scholar 

  3. Ziemnicka-Sylwester M 2013 Materials 6 1903

    Article  Google Scholar 

  4. Königshofer R, Fürnsinn S, Steinkellner P, Lengauer W, Haas R, Rabitsch K and Scheerer M 2005 Int. J. Refract. Met. Hard Mater. 23 350

    Article  Google Scholar 

  5. Ivanov V V, Blokhina I A and Kirik S D 2014 Russ. J. Appl. Chem. 86 1650

    Article  Google Scholar 

  6. Kang S H and Kim D J 2007 J. Eur. Ceram. Soc. 27 715

    Article  Google Scholar 

  7. Pierson H O and Mullendore A W 1982 Thin Solid Films 95 99

    Article  Google Scholar 

  8. Bača L. and Stelzer N 2008 J. Eur. Ceram. Soc. 28 907

    Article  Google Scholar 

  9. Gu Y, Qian Y, Chen L and Zhou F 2003 J. Alloys Compd. 352 325

    Article  Google Scholar 

  10. Hwang Y and Lee J K 2002 Mater. Lett. 54 1

    Article  Google Scholar 

  11. Cheng Y, Shigeta M, Choi S and Watanabe T 2012 , Chem. Eng. J. 183 483

    Article  Google Scholar 

  12. Patil K C, Aruna S T and Mimani T 2002 Curr. Opin. Solid State Mater. Sci. 6 507

    Article  Google Scholar 

  13. Varma A and Mukasyan A S 2004 Korean J. Chem. Eng. 21 527

    Article  Google Scholar 

  14. Liu G, Li J and Chen K 2013 Int. J. Refract. Met. Hard Mater. 39 90

    Article  Google Scholar 

  15. Sangshetti R M, Hiremath V A and Jali V M 2011 Bull. Mater. Sci. 34 1027

    Article  Google Scholar 

  16. Novikov N P, Borovinskaya I P and Merzhanov A G. 1975 Combustion process in chemical technology metallurgy (ed) A G Merzhanov (Chernogolovka, Moscow) p 174

  17. Moore J J and Feng H J 1995 Prog. Mater. Sci. 39 243

    Article  Google Scholar 

  18. Yeh C L and Li R F 2009 Chem. Eng. J. 147 405

    Article  Google Scholar 

  19. Nozari A, Ataie A and Heshmati-Manesh S 2012 Mater. Charact. 73 96

    Article  Google Scholar 

  20. Li J, Cai Z, Guo H, Xu B and Li L 2009 J. Alloys Compd. 479 803

    Article  Google Scholar 

  21. Meyers M, Olevsky E, Ma J and Jamet M 2001 Mater. Sci. Eng. A 311 83

    Article  Google Scholar 

  22. Mishra S K, Gokuul V and Paswan S 2014 Int. J. Refract. Met. Hard Mater. 43 19

    Article  Google Scholar 

  23. Weimin W, Zhengyi F, Hao W and Runzhang Y 2002 , J. Mater. Process. Technol. 128 162

    Article  Google Scholar 

  24. Niyomwas S, Chaichana N, Memongkol N and Wannasin J 2008 Songklanakarin J. Sci. Technol. 30 233

    Google Scholar 

  25. Bilgi E, Çamurlu H E, Akgün B, Topkaya Y and Sevinç N 2008 Mater. Res. Bull. 43 873

    Article  Google Scholar 

  26. Wang H Y, Jiang Q C, Zhao Y G and Zhao F 2004 J. Alloys Compd. 379 4

    Article  Google Scholar 

  27. Khanra A K, Pathak L C, Mishra S K and Godkhindi M M 2004 Mater. Lett. 58 733

    Article  Google Scholar 

  28. Derin B, Demircan U and Yücel O 2007 Metall. Mater. Eng. 4 47

    Google Scholar 

  29. Demircan U, Derin B and Yücel O 2007 Mater. Res. Bull. 42 312

    Article  Google Scholar 

  30. Aminikia B 2013 Chiang Mai J. Sci. 40 274

    Google Scholar 

  31. Sakaki M, Karimzadeh Behnami A and Bafghi M S 2014 Int. J. Refract. Met. Hard Mater. 44 142

    Article  Google Scholar 

  32. Hoseinpur A, Bafghi M S., Vahdati Khaki J, Jalaly M and Sakaki M 2015 Int. J. Refract. Met. Hard Mater. 50 191

    Article  Google Scholar 

  33. Ganesh I, Johnson R, Rao G V N, Mahajan Y R, Madavendra S S and Reddy B M 2005 Ceram. Int. 31 67

    Article  Google Scholar 

  34. Mangalaraja R V, Ramam K V S, Ravi J and Camurri C P 2007 Mater. Sci. Pol. 25 1075

    Google Scholar 

  35. Jones D A, Lelyveld T P, Mavrofidis S D, Kingman S W and Miles N J 2002 Resour. Conserv. Recycl. 34 75

    Article  Google Scholar 

  36. Chandrasekaran S, Ramanathan S and Basak T 2012 AIChE J. 58 330

    Article  Google Scholar 

  37. Thostenson E T and Chou T-W 1999, Composites Part A: Appl. S. 30 1055

    Article  Google Scholar 

  38. Haque K E 1999 Int. J. Miner. Process. 57 1

    Article  Google Scholar 

  39. Agrawal D K 1998 Curr. Opin. Solid State Mater. Sci. 3 480

    Article  Google Scholar 

  40. Farhadinia F and Sedghi A 2014 Metall. Mater. Trans. A 45 3125

    Article  Google Scholar 

  41. Mousavian R T, Sharafi S and Shariat M H 2011 Int. J. Refract. Met. Hard Mater. 29 281

    Article  Google Scholar 

  42. Cullity B D and Stock S R 1978 Elements of X-ray diffraction (Massachusetts, USA: Addison-Wesley)

  43. http://www.crct.polymtl.ca/reacweb_plus.php

  44. Lee J H, Seo D H, Won C W, Borovinskaya I P and Vershinnikov V I 2001 J. Mater. Sci. 36 5311

    Article  Google Scholar 

  45. Aruna S T and Mukasyan A S 2008 Curr. Opin. Solid State Mater. Sci. 12 44

    Article  Google Scholar 

  46. Borovinskaya I P, Ignat T I, Vershinnikov V I, Khurtina G G and Sachkova N V 2003 Inorg. Mater. 39 588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M SAKAKI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHANBARI, A., SAKAKI, M., FAEGHINIA, A. et al. Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg reactants through microwave-assisted self-propagating high-temperature synthesis method. Bull Mater Sci 39, 925–933 (2016). https://doi.org/10.1007/s12034-016-1229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1229-4

Keywords

Navigation