Skip to main content
Log in

Fabrication of Al2O3/(ZrB2 + TiB2) Composite Using MACS and Microwaves

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Because of the excellent thermal and mechanical properties of engineering ceramics, they have been used as structural materials or composite matrixes and reinforcements in recent years. Alumina, titanium diboride, and zirconium diboride have found important uses in the past two decades. In this study, Al2O3/(ZrB2 + TiB2) ceramic composite powders were fabricated in situ and mechanical activation by milling was used to assist combustion synthesis (CS). A mixture of Al, ZrO2, TiO2, and B2O3 powders were used as raw materials. Mechanical activation was done using ball milling of different durations. Afterward, combustion was initiated using microwaves on the activated mixtures. X-ray diffraction (XRD) and scanning electron microscopy were used to investigate the purity and microstructure of the products. XRD analysis of the samples in the final stages of the process revealed that Al2O3/(ZrB2 + TiB2) composite powder was successfully fabricated using mechanical activation and CS, but that the CS reaction did not occur in unmilled samples. It was shown that increasing milling time from 3 to 10 hours increased purity and homogeneity of the products to the point that no noticeable impurity existed in the samples milled for 10 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.K. Mishra, S.K. Das, L.C. Pathak: Mater. Sci. Eng. A, 2006, 426(1–2), pp. 229–234.

    Article  Google Scholar 

  2. S.K. Mishra, S.K. Das, V. Sherbacov: Compos. Sci. Technol., 2007, 67(11–12), pp. 2447–2453.

    Article  Google Scholar 

  3. D.D. Radev, D. Klissurski: Mater. Synth. Process., 2001, 9(3), pp. 131–136.

    Article  Google Scholar 

  4. S.K. Mishra, P.K.P. Rupa, S.K.Das, V. Shcherbakov: Compos. Sci. Technol., 2007, 67(7–8), pp. 1734–1739.

    Article  Google Scholar 

  5. S.P. Ray: Metall. Trans. A, 1992, 23A, pp. 2381–2385.

    Article  Google Scholar 

  6. S.K. Mishra, S.K. Das, P. Ramachandrara, D. Belov, S. Mamyan: Metall. Mater. Trans. A, 2003, 34A, pp. 1979–1983.

    Article  Google Scholar 

  7. K.C. Patil, S.T. Aruna, T. Mimani: Curr. Opin. Solid State Mater. Sci., 2002, 6(6), pp. 507–512.

    Article  Google Scholar 

  8. H.E. Camurlu, F. Magliab: J. Alloys Compd., 2009, 478(1–2), pp. 721–725.

    Article  Google Scholar 

  9. S. Niyomwas, N. Chaichana, N. Memongkol: Sci. Technol. 2008, 30, pp. 233–238.

    Google Scholar 

  10. V. Sundaram, K.V. Logan, R.F. Speyer: Mater. Res. 1997, 12(07), pp. 1681–1684.

    Article  Google Scholar 

  11. R. Taherzadeh Mousavian, S. Sharafi, and M.H. Shariat: Int. J. Refract. Metal. Hard Mater., 2011, vol. 29 (2), pp. 281–88.

  12. L. Takacs: Prog. Mater. Sci., 2002, 47(4), pp. 355–414.

    Article  Google Scholar 

  13. P. Mossino: Ceram. Int., 2004, 30(3), pp. 311–332.

    Article  Google Scholar 

  14. L. Takacs, V. Soika, P. Balaz: Solid State Ionics, 2001, 141–142, pp. 641–647.

    Article  Google Scholar 

  15. P. Millet, T. Hwang: Mater. Sci., 1996, 31(2), pp. 351–355.

    Article  Google Scholar 

  16. N. Setoudeh, N.J. Welham: Alloys Compd., 2006, 420(1–2), pp. 225–28.

    Article  Google Scholar 

  17. N.J. Welham: Miner. Eng., 1999, 12(10), pp. 1213–24.

    Article  Google Scholar 

  18. E. Balakrishnan: Appl. Math. Decis. Sci. 2001, 5(3), pp. 151–164.

    Article  Google Scholar 

  19. S. Gedenvanishili, D. Agrawal, and R. Roy: Mater. Sci. Lett., 1999, vol. 18 (9), pp. 665–68.

  20. D.K. Agrawal: Curr. Opin. Solid State Mater. Sci., 1998, vol. 3, pp. 480–85.

  21. D.K. Agrawal: Trans. Indian Ceram. Soc., 2006, vol. 65 (3), pp. 129–44.

  22. M. Gupta and E.W. Leong: Microwaves and Metals, Chap. 3, Wiley, New York, 2008.

  23. B.L. Hays: Microwave Synthesis, Chap. 1, CEM Publishing, Berkshire, 2002.

  24. D.R. Gaskell: Introduction to Thermodynamics of Materials, 5th edition, Taylor and Francis, Boca Raton, FL, 2003.

  25. E. Mohammad Sharifi, F. Karimzadeh, and M.H. Enayati: Adv. Powder Technol., 2010, vol. 22 (4), pp. 526–31.

Download references

Acknowledgments

The authors would like to acknowledge Dr. Farzad Azimi for his support in all steps of this work and students Sepideh Farhadinia and Ali Safapour for their help. The authors also thank Mrs. Mojhgan Bandabdi for her help in correcting the language of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Sedghi.

Additional information

Manuscript submitted June 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhadinia, F., Sedghi, A. Fabrication of Al2O3/(ZrB2 + TiB2) Composite Using MACS and Microwaves. Metall Mater Trans A 45, 3125–3129 (2014). https://doi.org/10.1007/s11661-014-2246-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2246-9

Keywords

Navigation