Skip to main content
Log in

A catalyst-free synthesis of germanium nanowires obtained by combined X-ray chemical vapour deposition of GeH4 and low-temperature thermal treatment techniques

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A catalyst-free innovative synthesis, by combined X-ray chemical vapour deposition and low-temperature thermal treatments, which has not been applied since so far to the growth of germanium nanowires (Ge-NWs), produced high yields of the nanoproducts with the GeH4 reactant gas. Nanowires were grown on both surfaces of a conventional deposition quartz substrate. They were featured with high purity and very large aspect ratios (ranging from 100 to 500). Products were characterized by scanning electron microscopy with energy-dispersive atomic X-ray fluorescence and transmission electron microscopies, X-ray powder diffraction diffractometry, thermogravimetric analysis with differential scanning calorimetry, vibrational infrared and Raman and ultraviolet–visible–near infrared spectroscopies. A quantitative nanowire bundles formation was observed in the lower surface of the quartz substrate positioned over a heating support, whilst spots of nanoflowers constituted by Ge-NWs emerged from a bulk amorphous germanium film matter, deposited on the upper surface of the substrate. The nanoproducts were characterized by crystalline core morphology, providing semiconductive features and optical band gap of about 0.67 eV. The possible interpretative base-growth mechanisms of the nanowires, stimulated by the concomitant application of radiant and thermal conditions with no specific added metal catalyst, are hereafter investigated and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kim J, Bedell S W and Sadana D K 2011 Appl. Phys. Lett. 98 082112

    Article  Google Scholar 

  2. Yamamoto K, Yamanaka T, Ueno R, Hirayama K, Yang H G, Wang D and Nakashima H 2012 Thin Solid Films 520 3382

    Article  Google Scholar 

  3. Tsao C Y, Weber J W, Campbell P, Conibeer G, Song D Y and Green M A 2010 Sol. Energy Mater. Sol. Cells 94 1501

    Article  Google Scholar 

  4. Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C and Michel J 2012 Opt. Exp. 20 11316

    Article  Google Scholar 

  5. Sorianello V, De Iacovo A, Colace L, Fabbri A, Tortora L, Buffagni E and Assanto G 2012 Appl. Phys. Lett. 101 081101

    Article  Google Scholar 

  6. Pillarisetty R 2011 Nature 479 324

    Article  Google Scholar 

  7. Gerung H, Boyle T J, Tribby L J, Bunge S D, Brinker C J and Han S M 2006 J. Am. Chem. Soc. 128 5244

    Article  Google Scholar 

  8. Yu B, Sun X H, Calebotta G A, Dholakia G R and Meyyappan M J 2006 J. Clust. Sci. 17 579

    Article  Google Scholar 

  9. Heath J R and Legoues F K 1993 Chem. Phys. Lett. 208 263

    Article  Google Scholar 

  10. Hanrath T and Korgel B A 2002 J. Am. Chem. Soc. 124 1424

    Article  Google Scholar 

  11. Schonenberger C, Van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H and Staufer U 1997 J. Phys. Chem. B 101 5497

    Article  Google Scholar 

  12. Morales A M and Lieber C M 1998 Science 279 208

    Article  Google Scholar 

  13. Wu Y and Yang P D 2000 Chem. Mater. 12 605

    Article  Google Scholar 

  14. Mathur S, Shen H, Sivakov V and Werner U 2004 Chem. Mater. 16 2449

    Article  Google Scholar 

  15. Li X, Meng G, Xu Q, Kong M, Zhu X, Chu Z and Li A P 2011 Nano Lett. 11 1704

    Article  Google Scholar 

  16. Adhikari H, Marshall A F, Chidsey C E D and McIntyre P C 2006 Nano Lett. 6 318

    Article  Google Scholar 

  17. Koto M, Marshall A F, Goldthorpe I A and McIntyre P C 2010 Small 6 1032

    Article  Google Scholar 

  18. Thombare S V, Marshall A F and McIntyre P C 2012 J. Appl. Phys. 112 054325

    Article  Google Scholar 

  19. Wang D and Dai H 2002 Angew. Chem. Int. Ed. 41 4783

    Article  Google Scholar 

  20. Skukla B, Saito T, Ohmori S, Koshi M, Yumura M and Iijima S 2010 Chem. Mater. 22 6035

    Article  Google Scholar 

  21. Lotty O, Hobbs R, O’Regan C, Hlina J, Marschner C, O’Dwyer C, Petkov N and Holmes J D 2013 Chem. Mater. 25 215

    Article  Google Scholar 

  22. Barrett C A, Geaney H, Gunning R D, Laffir F R and Ryan K M 2011 Chem. Commun. 47 3843

    Article  Google Scholar 

  23. Jagannathan H, Deal M, Nishi Y, Woodruff J, Chidsey C E D and McIntyre P C 2006 J. Appl. Phys. 100 024318

    Article  Google Scholar 

  24. Yan C Y and Lee P S 2009 J. Phys. Chem. C 113 2208

    Article  Google Scholar 

  25. Kumar R R, Yuvaraj D and Rao K N 2010 Mater. Lett. 64 1766

    Article  Google Scholar 

  26. Mullane E, Geaney H and Ryan K M 2012 Chem. Commun. 48 5446

    Article  Google Scholar 

  27. Lu X T, Harris J T, Villareal J E, Chockla A M and Korgel B A 2013 Chem. Mater. 25 2172

    Article  Google Scholar 

  28. O’Regan C, Biswas S, O’Kelly C, Jung S J, Boland J J, Petkov N and Holmes J D 2013 Chem. Mater. 25 3096

    Article  Google Scholar 

  29. Marshall A F, Goldthorpe I A, Adhikari H, Koto M, Wang Y C, Fu L, Olsson E and McIntyre P C 2010 Nano Lett. 10 3302

    Article  Google Scholar 

  30. Ratchford J B, Goldthorpe I A, Sun Y, McIntyre P C, Pianetta P A and Chidsey C E D 2009 Langmuir 25 9473

    Article  Google Scholar 

  31. Woodruff J H, Ratchford J B, Goldthorpe I A, McIntyre P C and Chidsey C E D 2007 Nano Lett. 7 1637

    Article  Google Scholar 

  32. Arrais A, Benzi P, Bottizzo E and Demaria C 2007 J. Appl. Phys. 102 104905

    Article  Google Scholar 

  33. Arrais A, Benzi P, Bottizzo E and Demaria C 2009 J. Phys. D: Appl. Phys. 42 105406

    Article  Google Scholar 

  34. Antoniotti P, Benzi P, Castiglioni M and Volpe P 1999 Eur. J. Inorg. Chem. 1999 323

  35. Demaria C, Benzi P, Arrais A, Bottizzo E, Antoniotti P, Rabezzana R and Operti L 2013 J. Mater. Sci. 48 6357

    Article  Google Scholar 

  36. O’Regan C, Biswas S, Petkov N and Holmes J D 2014 J. Mater. Chem. C 2 14

    Article  Google Scholar 

  37. (a) Cooper A S 1962 Acta Crystallogr. 15 578 in (b) The Crystallographic Open Database (COD) http://www.crystallography.net

  38. Ikeda H, Qi Y, Cagin T, Samwer K, Johnson W L and Goddard W A I. 1999, Phys. Rev. Lett. 82 2900

    Article  Google Scholar 

  39. Gupta S, Katiyar R S, Morell G, Weisz S Z and Balberg I 1999 Appl. Phys. Lett. 75 2803

    Article  Google Scholar 

  40. Tauc J 1974 Amorphous and liquid semiconductors (ed.) J Tauc (New York: Plenum) p 159

  41. Kumar R T A, Lekha P C, Sundarakannan B and Padiyan D P 2012 Philos. Mag. 11 1422

    Article  Google Scholar 

  42. Benzi P, Bottizzo E and Demaria C 2006 Chem. Vap. Dep. 12 25

    Article  Google Scholar 

  43. Lieten R R, Bustillo K, Smets T, Simoen E, Ager J W, Haller E E and Loquet J P 2012 Phys. Rev. B 86 0352086

    Article  Google Scholar 

  44. Pan R K, Tao H Z, Zang H C, Zhang T J and Zhao X J 2009 Physica B: Condens. Matter 404 3397

    Article  Google Scholar 

  45. Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89

    Article  Google Scholar 

  46. Park W I, Zheng G F, Jiang X C, Tian B Z and Lieber C M 2008 Nano Lett. 8 3004

    Article  Google Scholar 

  47. Adhikari H, Marshall A F, Goldthorpe I A, Chidsey C E D and McIntyre P C 2007 ACS Nano 1 415

    Article  Google Scholar 

  48. Renard C, Boukhicha R, Gardès C, Fossard F, Yam V, Vincent L, Bouchier D, Hajjar S, Bubendorff J L, Garreau G and Pirri C 2012 Thin Solid Films 520 3314

    Article  Google Scholar 

  49. Kelires P C 1998 Int. J. Mod. Phys. C 9 357

    Article  Google Scholar 

  50. Geaney H, Dickinson C, Barrett C A and Ryan K M 2011 Chem. Mater. 23 4838

    Article  Google Scholar 

  51. Dai L, You L P, Duan X F, Lian W C and Qin G G 2004 J. Cryst. Growth 267 538

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by public Progetti di Rilevante Interesse Nazionale (PRIN) of the Italian Ministero dell’Istruzione, Università e Ricerca (MIUR). AA and EB acknowledge funding from Fondazione CRT (Turin, I, Project 2013-2430). Dr Luca Belforte and Dr Mauro Sgroi (Centro Ricerche Fiat, Turin, I) were acknowledged for the acquisition of SEM micrographic analysis and electrical conductive measurements. Dr Simone Cantamessa, Dr Giorgio Gatti (University of Eastern Piedmont, I) and Ing. Dario Pezzini (Polytechnic of Turin, I) were acknowledged for the acquisition of TEM, SEM-EDAX and EDAX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALDO ARRAIS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DEMARIA, C., ARRAIS, A., BENZI, P. et al. A catalyst-free synthesis of germanium nanowires obtained by combined X-ray chemical vapour deposition of GeH4 and low-temperature thermal treatment techniques. Bull Mater Sci 39, 499–507 (2016). https://doi.org/10.1007/s12034-015-1143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1143-1

Keywords

Navigation