Skip to main content
Log in

Growth and thermal annealing of amorphous germanium carbide obtained by X-ray chemical vapor deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growth of amorphous hydrogenated germanium carbide (a-GeCx:H) alloys was performed with high deposition rates by radiolysis chemical vapor deposition (X-ray) of germane/allene (GeH4/C3H4, 70/30 %) mixtures at different irradiation times. The experimental deposition parameters were correlated to the composition, the structural features, and the optical coefficients of the films, as studied by different spectroscopic techniques, namely, IR, Raman, and UV–Vis. It was observed that the increase of irradiation time yields a more hydrogenated and more disordered material, with abundant formation of sp3 CH2 groups, characterized by high band-gap values. In addition, we report the effects of thermal annealing on bonding structures and optical properties of the amorphous germanium carbon alloys. The decrease of hydrogen extent, together with the enhancement of sp2 C bonds present and amorphous-to-crystalline germanium phase transition, contribute to a larger structural order of the material and to the reduction of the optical gap at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu JQ, Jiang CZ, Han JC, Yu HL, Wang JZ, Jia ZC, Chen RR (2012) Appl Surf Sci 258:3877

    Article  CAS  Google Scholar 

  2. Mahmood A, Shah A, Castillon FF, Cota Araiza L, Heiras j, Raja MYA, Khizar M (2011) Curr Appl Phys 11:547

    Article  Google Scholar 

  3. Schrader JS, Huguenin-Love JL, Soukup RJ, Ianno NJ, Exstrom CL, Darveau SA, Udey RN, Dalal VL (2006) Sol Energy Mater Sol Cells 90:2338

    Article  CAS  Google Scholar 

  4. Yashiki Y, Miyajima S, Yamada A, Konagai M (2006) Thin Solid Films 501:202

    Article  CAS  Google Scholar 

  5. Hu CQ, Zheng WT, Tian HW, Xu L, Jiang Q (2006) J Phys: Condens Matter 18:4231

    Article  CAS  Google Scholar 

  6. Benzi P, Operti L, Rabezzana R (2000) Eur J Inorg Chem 2000:505

    Article  Google Scholar 

  7. Benzi P, Bottizzo E, Operti L, Rabezzana R, Vaglio GA, Volpe P (2002) Chem Mater 14:2506

    Article  CAS  Google Scholar 

  8. Benzi P, Bottizzo E, Demaria C (2006) Chem Vapor Depos 12:25

    Article  CAS  Google Scholar 

  9. Arrais A, Benzi P, Bottizzo E, Demaria C (2007) J Appl Phys 102:104905

    Article  Google Scholar 

  10. Arrais A, Benzi P, Bottizzo E, Demaria C (2009) J Phys D Appl Phys 42:105406

    Article  Google Scholar 

  11. Gazicki M, Janowska G (1999) Thin Solid Films 352:6

    Article  CAS  Google Scholar 

  12. Basa DK (2002) Thin Solid Films 406:75

    Article  CAS  Google Scholar 

  13. Kazimierski P, Tyczkowski J, Kozanecki M, Hatanaka Y, Aoki T (2002) Chem Mater 14:4694

    Article  CAS  Google Scholar 

  14. Akaoglu B, Sel K, Atilgan I, Katircioglu B (2008) Opt Mater 30:1257

    Article  CAS  Google Scholar 

  15. Tabbal M, Said A, Hannoun E, Christidis T (2007) Appl Surf Sci 253:7050

    Article  CAS  Google Scholar 

  16. Duan X, Lieber CM (2000) Adv Mater 12:298

    Article  CAS  Google Scholar 

  17. Vilcarromero J, Marques FC (1999) Thin Solid Films 343–344:445

    Article  Google Scholar 

  18. Kumru M (1991) Thin Solid Films 198:75

    Article  CAS  Google Scholar 

  19. Hu CQ, Zhu JQ, Zheng WT, Han JC (2009) Appl Surf Sci 255:3552

    Article  CAS  Google Scholar 

  20. Gharbi R, Fathallah M, Alzaied N, Tresso E, Tagliaferro A (2008) Mater Sci Eng C 28:795

    Article  CAS  Google Scholar 

  21. Jolly AJ, Drake JE (1963) Inorg Synth 7:37

    Article  Google Scholar 

  22. Matsuda A (2004) J Non-Cryst Solids 338–340:1

    Article  Google Scholar 

  23. Lubianiker Y, Tan Y, Cohen JD, Ganguly G (2000) J Non-Cryst Solids 266–269:450

    Article  Google Scholar 

  24. Chiussi S, González P, Serra J, León B, Pérez-Amor M (1996) Appl Surf Sci 106:75

    Article  CAS  Google Scholar 

  25. Kodolbas AO (2003) Mater Sci Eng B 98:161

    Article  Google Scholar 

  26. Robertson J (1992) Philos Mag B 66:615

    Article  CAS  Google Scholar 

  27. Chew K, Rusli, Yoon SF, Ahn J, Ligatchev V, Teo EJ, Osipowicz T, Watt F (2002) J Appl Phys 92:2937

    Article  CAS  Google Scholar 

  28. Mariotto G, Vinegoni C, Jacobsohn LG, Freire FL Jr (1999) Diam Relat Mater 8:668

    Article  CAS  Google Scholar 

  29. Carey JD (2006) Thin Solid Films 515:996

    Article  CAS  Google Scholar 

  30. Gazicki M (1999) Chaos Soliton Fract 10:1983

    Article  CAS  Google Scholar 

  31. Taga K, Hamada S, Fukui H, Yoshida H, Ohno K, Matsuura HJ (2002) J Mol Struct 610:85

    Article  CAS  Google Scholar 

  32. Drüsedau TP, Annen A, Schröder B, Freistedt H (1994) Philos Mag B 69:1

    Article  Google Scholar 

  33. Veres M, Koós M, Pócsik I (2002) Diam Relat Mater 11:1110

    Article  CAS  Google Scholar 

  34. Sagnes E, Szurmak J, Manage D, Zukotynski S (1999) J Non-Cryst Solids 249:69

    Article  CAS  Google Scholar 

  35. Gazicki M, Szymanowski H, Tyczkowski J, Malinovsky L, Schalko J, Fallmann W (1995) Thin Solid Films 256:31

    Article  CAS  Google Scholar 

  36. Mathis R, Barthelat M, Mathis F (1970) Spectrochim Acta A 26:1993

    Article  Google Scholar 

  37. Benzi P, Bottizzo E, Operti L, Volpe P (2004) Chem Mater 16:1068

    Article  CAS  Google Scholar 

  38. Makadsi MN, Alias MFA, Essa AA, AI-Azawi HR (2003) Renew Energy 28:975

    Article  CAS  Google Scholar 

  39. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, New York, p 159

    Book  Google Scholar 

  40. Mott NF, Davis EA (1979) Electronic Processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford, p 272

    Google Scholar 

  41. Swain BP, Patil SB, Kumbhar A, Dusane RO (2003) Thin Solid Films 430:186

    Article  CAS  Google Scholar 

  42. Urbach F (1953) Phys Rev 92:1324

    Article  CAS  Google Scholar 

  43. Wang G, Nie Q, Wang X, Dai S, Zhu M, Shen X, Bai K, Zhang X (2010) Spectrochim Acta A 75:1125

    Article  Google Scholar 

  44. Jousse D, Bustarret E, Boulitrop F (1985) Solid State Commun 55:435

    Article  CAS  Google Scholar 

  45. Cody GD, Tiedje T, Ables B, Brooks B, Goldstein Y (1981) Phys Rev Lett 47:1480

    Article  CAS  Google Scholar 

  46. Tzv Mihailova, Toneva A (1994) Sol Energ Mat Sol C 36:1

    Google Scholar 

  47. Gupta S, Katiyar RS, Morell G, Weisz SZ, Balberg I (1999) Appl Phys Lett 75:2803

    Article  CAS  Google Scholar 

  48. Fogal BJ, O’Leary SK, Lockwood DJ, Baribeau J-M, Noël M, Zwinkels JC (2001) Solid State Commun 120:429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Università di Torino and the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) for financial support through the “Cofinanziamento di Programmi di Ricerca di Rilevante Interesse Nazionale” (PRIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Demaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demaria, C., Benzi, P., Arrais, A. et al. Growth and thermal annealing of amorphous germanium carbide obtained by X-ray chemical vapor deposition. J Mater Sci 48, 6357–6366 (2013). https://doi.org/10.1007/s10853-013-7435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7435-1

Keywords

Navigation