Skip to main content

Advertisement

Log in

The Cholera Toxin B Subunit (CTB) Fused to the Porcine Arterivirus Matrix M and GP5 Envelope Proteins Fails to Enhance the GP5-Specific Antibody Response in Pigs Immunized with Adenovectors

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus of the Arteriviridae family. As the current commercial vaccines are incompletely protective effective against PRRSV infection, we developed a vaccine strategy using replicating but non-disseminating adenovectors (rAdVs) expressing the PRRSV M matrix protein in fusion with the neutralizing major epitope-carrying GP5 envelope protein (Roques et al. in Vet Res 44:17, 2013). Although production of GP5-specific antibodies (Abs) was observed, no PRRSV-specific neutralizing Abs (NAbs) were induced in pigs given the rAdVs expressing M-GP5 or M-GP5m (GP5m being a mutant form of GP5). Nevertheless, partial protection was observed in the M-GP5m-rAdV-inoculated pigs experimentally infected with PRRSV. Here, we determined the impact of the cholera toxin B subunit (CTB, known for its adjuvant effect) in fusion with the C-terminus of M-GP5m on the Ab response to PRRSV. Three-week-old pigs were immunized twice both intramuscularly and intranasally at 3-week intervals with rAdV-expressing the green fluorescent protein (rAdV-GFP), rAdV-M-GP5m, or rAdV-M-GP5m-CTB. Pigs immunized with rAdV-M-GP5m showed a high level of serum GP5-specific Abs (as determined by an indirect ELISA). In contrast, CTB in fusion with M-GP5m had an unexpected severe negative impact on GP5-specific Ab production. PRRSV-specific NAbs could not be detected in any pigs of all groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holtkamp, D., Kliebenstein, J., Zimmerman, J., Neumann, E., Rotto, H., Yoder, T., et al. (2012). Economic impact of porcine reproductive and respiratory syndrome virus on U.S. Pork Producers. Animal Industry report, Iowa, USA, AS 658, ASL R2671.

  2. Meulenberg, J. J. (2000). PRRSV, the virus. Veterinary Research, 31, 11–21.

    CAS  Google Scholar 

  3. Ostrowski, M., Galeota, J. A., Jar, A. M., Platt, K. B., Osorio, F. A., & Lopez, O. J. (2002). Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. Journal of Virology, 76, 4241–4250.

    Article  CAS  Google Scholar 

  4. Jiang, Y., Xiao, S., Fang, L., Yu, X., Song, Y., Niu, C., & Chen, H. (2006). DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine, 24, 2869–2879.

    Article  CAS  Google Scholar 

  5. Madsen, K. G., Hansen, C. M., Madsen, E. S., Strandbygaard, B., Botner, A., & Sorensen, K. J. (1998). Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds. Archives of Virology, 143, 1683–1700.

    Article  CAS  Google Scholar 

  6. Scortti, M., Prieto, C., Alvarez, E., Simarro, I., & Castro, J. M. (2007). Failure of an inactivated vaccine against porcine reproductive and respiratory syndrome to protect gilts against a heterologous challenge with PRRSV. The Veterinary Record, 161, 809–813.

    CAS  Google Scholar 

  7. Butler, J. E., Lager, K. M., Golde, W., Faaberg, K. S., Sinkora, M., Loving, C., & Zhang, Y. I. (2014). Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunologic Research, 59, 81–108.

    Article  CAS  Google Scholar 

  8. Roques, E., Girard, A., St-Louis, M. C., Massie, B., Gagnon, C. A., Lessard, M., & Archambault, D. (2013). Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Veterinary Research, 44, 17.

    Article  CAS  Google Scholar 

  9. Sanchez, J., & Holmgren, J. (2011). Cholera toxin—a foe & a friend. Indian Journal of Medical Research, 133, 153–163.

    CAS  Google Scholar 

  10. George-Chandy, A., Eriksson, K., Lebens, M., Nordstrom, I., Schon, E., & Holmgren, J. (2001). Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infection and Immunity, 69, 5716–5725.

    Article  CAS  Google Scholar 

  11. Kheyar, A., Jabrane, A., Zhu, C., Cleroux, P., Massie, B., Dea, S., & Gagnon, C. A. (2005). Alternative codon usage of PRRS virus ORF5 gene increases eucaryotic expression of GP(5) glycoprotein and improves immune response in challenged pigs. Vaccine, 23, 4016–4022.

    Article  CAS  Google Scholar 

  12. Gagnon, C. A., Lachapelle, G., Langelier, Y., Massie, B., & Dea, S. (2003). Adenoviral-expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions. Archives of Virology, 148, 951–972.

    Article  CAS  Google Scholar 

  13. Oualikene, W., Lamoureux, L., Weber, J. M., & Massie, B. (2000). Protease-deleted adenovirus vectors and complementing cell lines: Potential applications of single-round replication mutants for vaccination and gene therapy. Human Gene Therapy, 11, 1341–1353.

    Article  CAS  Google Scholar 

  14. Mullick, A., Xu, Y., Warren, R., Koutroumanis, M., Guilbault, C., Broussau, S., et al. (2006). The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnology, 6, 43.

    Article  Google Scholar 

  15. Chia, M. Y., Hsiao, S. H., Chan, H. T., Do, Y. Y., Huang, P. L., Chang, H. W., et al. (2010). The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs. Veterinary Microbiology, 146, 189–199.

    Article  CAS  Google Scholar 

  16. Gonin, P., Mardassi, H., Gagnon, C. A., Massie, B., & Dea, S. (1998). A nonstructural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus. Archives of Virology, 143, 1927–1940.

    Article  CAS  Google Scholar 

  17. Harakuni, T., Sugawa, H., Komesu, A., Tadano, M., & Arakawa, T. (2005). Heteropentameric cholera toxin B subunit chimeric molecules genetically fused to a vaccine antigen induce systemic and mucosal immune responses: A potential new strategy to target recombinant vaccine antigens to mucosal immune systems. Infection and Immunity, 73, 5654–5665.

    Article  CAS  Google Scholar 

  18. Dakterzada, F., Mobarez, A. M., Roudkenar, M. H., & Forouzandeh, M. (2012). Production of pentameric cholera toxin B subunit in Escherichia coli. Avicenna Journal of Medical Biotechnology, 4, 89–94.

    CAS  Google Scholar 

  19. Jiang, Y., Fang, L., Xiao, S., Zhang, H., Pan, Y., Luo, R., et al. (2007). Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine, 25, 547–560.

    Article  CAS  Google Scholar 

  20. Zheng, Q., Chen, D., Li, P., Bi, Z., Cao, R., Zhou, B., & Chen, P. (2007). Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes, 35, 585–595.

    Article  CAS  Google Scholar 

  21. Jiang, W., Jiang, P., Li, Y., Tang, J., Wang, X., & Ma, S. (2006). Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Veterinary Immunology and Immunopathology, 113, 169–180.

    Article  CAS  Google Scholar 

  22. Cruz, J. L., Zuniga, S., Becares, M., Sola, I., Ceriani, J. E., Juanola, S., et al. (2010). Vectored vaccines to protect against PRRSV. Virus Research, 154, 150–160.

    Article  CAS  Google Scholar 

  23. Charerntantanakul, W. (2012). Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. World Journal of Virology, 1, 23–30.

    Article  Google Scholar 

  24. Kim, T. G., & Langridge, W. H. (2003). Assembly of cholera toxin B subunit full-length rotavirus NSP4 fusion protein oligomers in transgenic potato. Plant Cell Reports, 21, 884–890.

    CAS  Google Scholar 

  25. Tsuji, N., Suzuki, K., Kasuga-Aoki, H., Matsumoto, Y., Arakawa, T., Ishiwata, K., & Isobe, T. (2001). Intranasal immunization with recombinant Ascaris suum 14-kilodalton antigen coupled with cholera toxin B subunit induces protective immunity to A. suum infection in mice. Infection and Immunity, 69, 7285–7292.

    Article  CAS  Google Scholar 

  26. Matoba, N., Magerus, A., Geyer, B. C., Zhang, Y., Muralidharan, M., Alfsen, A., et al. (2004). A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proceedings of the National Academy of Sciences of the United States of America, 101, 13584–13589.

    Article  CAS  Google Scholar 

  27. Chen, W., Patel, G. B., Yan, H., & Zhang, J. (2010). Recent advances in the development of novel mucosal adjuvants and antigen delivery systems. Human Vaccines, 6(9), 709–714.

    Article  Google Scholar 

  28. Holmgren, J., Adamsson, J., Anjuere, F., Clemens, J., Czerkinsky, C., Eriksson, K., et al. (2005). Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunology Letters, 97, 181–188.

    Article  CAS  Google Scholar 

  29. Lawson, S. R., Rossow, K. D., Collins, J. E., Benfield, D. A., & Rowland, R. R. (1997). Porcine reproductive and respiratory syndrome virus infection of gnotobiotic pigs: Sites of virus replication and co-localization with MAC-387 staining at 21 days post-infection. Virus Research, 51, 105–113.

    Article  CAS  Google Scholar 

  30. Wu, B., Yuan, T., Qi, R., He, J., Fu, Y., Niu, D., & Li, W. (2012). Effect of immunization with a recombinant cholera toxin B subunit/somatostatin fusion protein on immune response and growth hormone levels in mice. Biotechnology Letters, 34, 2199–2203.

    Article  CAS  Google Scholar 

  31. Pimenta, F. C., Miyaji, E. N., Areas, A. P., Oliveira, M. L., de Andrade, A. L., Ho, P. L., et al. (2006). Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice. Infection and Immunity, 74, 4939–4944.

    Article  CAS  Google Scholar 

  32. Song, H., Zhou, L., Fang, W., Li, Y., Wang, X., Fang, H., et al. (2004). High-level expression of codon optimized foot-and-mouth disease virus complex epitopes and cholera toxin B subunit chimera in Hansenula polymorpha. Biochemical and Biophysical Research Communications, 315, 235–239.

    Article  CAS  Google Scholar 

  33. Mizel, S. B., & Bates, J. T. (2010). Flagellin as an adjuvant: Cellular mechanisms and potential. The Journal of Immunology, 185, 5677–5682.

    Article  CAS  Google Scholar 

  34. Roques, E., Girard, A., Gagnon, C. A., & Archambault, D. (2013). Antibody responses induced in mice immunized with recombinant adenovectors expressing chimeric proteins of various porcine pathogens. Vaccine, 31, 2698–2704.

    Article  CAS  Google Scholar 

  35. Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65, 1357–1369.

    Article  CAS  Google Scholar 

  36. Qiu, S., Ren, X., Ben, Y., Ren, Y., Wang, J., Zhang, X., et al. (2014). Fusion-expressed CTB improves both systemic and mucosal T-cell responses elicited by an intranasal DNA priming/intramuscular recombinant vaccinia boosting regimen. Journal of Immunology Research, 2014, 308732.

    Google Scholar 

  37. Murtaugh, M. P., & Genzow, M. (2011). Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine, 29, 8192–8204.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC, strategic program), Agriculture and Agri-Food Canada (AAC), the “Conseil pour le Dévelopement de l’Agriculture du Québec” (CDAQ), the “Fédération des Producteurs de Porcs du Québec” (FPPQ), and “les Conseils d’Adaptation du porc de l’Alberta, du Manitoba et de la Saskatchewan”. E. Roques was supported by graduate student fellowships from the “Centre de Recherche en Infectiologie Porcine et Avicole” (CRIPA) and “La Fondation UQAM”. The authors thank Marie-Claude St-Louis, Frédéric Beaudoin, Nedzad Music, Wilfried Saron, and Aurélie Girard for technical assistance and/or helpful discussion, Steve Méthot for statistical analyses of the data, and all employees who took care of the animals during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Archambault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roques, E., Lessard, M. & Archambault, D. The Cholera Toxin B Subunit (CTB) Fused to the Porcine Arterivirus Matrix M and GP5 Envelope Proteins Fails to Enhance the GP5-Specific Antibody Response in Pigs Immunized with Adenovectors. Mol Biotechnol 57, 701–708 (2015). https://doi.org/10.1007/s12033-015-9861-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9861-6

Keywords

Navigation