Skip to main content
Log in

Cloning of Intron-Removed Enolase Gene and Expression, Purification, Kinetic Characterization of the Enzyme from Theileria annulata

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Tropical theileriosis is a disease caused by infection with an apicomplexan parasite, Theileria annulata, and giving rise to huge economic losses. In recent years, parasite resistance has been reported against the most effective antitheilerial drug used for the treatment of this disease. This emphasizes the need for alternative methods of treatment. Enolase is a key glycolytic enzyme and can be selected as a macromolecular target of therapy of tropical theileriosis. In this study, an intron sequence present in T. annulata enolase gene was removed by PCR-directed mutagenesis, and the gene was first cloned into pGEM-T Easy vector and then subcloned into pLATE31 vector, and expressed in Escherichia coli cells. The enzyme was purified by affinity chromatography using Ni–NTA agarose column. Steady-state kinetic parameters of the enzyme were determined using GraFit 3.0. High quantities (~65 mg/l of culture) of pure recombinant T. annulata enolase have been obtained in a higly purified form (>95 %). Homodimer form of purified protein was determined from the molecular weights obtained from a single band on SDS-PAGE (48 kDa) and from size exclusion chromatography (93 kDa). Enzyme kinetic measurements using 2-PGA as substrate gave a specific activity of ~40 U/mg, K m: 106 μM, kcat: 37 s−1, and k cat/K m: 3.5 × 105 M−1 s−1. These values have been determined for the first time from this parasite enzyme, and availability of large quantities of enolase enzyme will facilitate further kinetic and structural characterization toward design of new antitheilerial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mhadhbi, M., Naouach, A., Boumiza, A., Chaabani, M. F., BenAbderazzak, S., & Darghouth, M. A. (2010). In vivo evidence for the resistance of Theileria annulata to buparvaquone. Veterinary Parasitology, 169, 241–247.

    Article  CAS  Google Scholar 

  2. Weir, W., Karagenç, T., Gharbi, M., Simuunza, M., Aypak, S., Aysul, N., et al. (2011). Population diversity and multiplicity of infection in Theileria annulata. International Journal for Parasitology, 41, 193–203.

    Article  Google Scholar 

  3. Glass, E. J., Crutchley, S., & Jensen, K. (2012). Living with the enemy or uninvited guests: functional genomics approaches to investigating host resistance or tolerance traits to a protozoan parasite, Theileria annulata, in cattle. Veterinary Immunology and Immunopathology, 148, 178–189.

    Article  CAS  Google Scholar 

  4. Witschi, M., Xia, D., Sanderson, S., Baumgartner, M., Wastling, J. M., & Dobbelaere, D. A. (2013). Proteomic analysis of the Theileria annulata schizont. International Journal for Parasitology, 43, 173–180.

    Article  CAS  Google Scholar 

  5. Sharifiyazdi, H., Namazi, F., Oryan, A., Shahriari, R., & Razavi, M. (2012). Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure. Veterinary Parasitology, 187, 431–435.

    Article  CAS  Google Scholar 

  6. Pal-Bhowmick, I., Sadagopan, K., Vora, H. K., Sehgal, A., Sharma, S., & Jarori, G. K. (2004). Cloning, over-expression, purification and characterization of Plasmodium falciparum enolase. European Journal of Biochemistry, 271, 4845–4854.

    Article  CAS  Google Scholar 

  7. Kiama, T., Kiaira, J., Konji, V., & Musoke, A. (1999). Enzymes of glucose and glycerol catabolism in in vitro-propagated Theileria parva Schizonts. The Veterinary Journal, 158, 221–227.

    Article  CAS  Google Scholar 

  8. Labbé, M., Péroval, M., Bourdieu, C., Girard-Misguich, F., & Péry, P. (2006). Eimeria tenella enolase and pyruvate kinase: a likely role in glycolysis and in others functions. International Journal for Parasitology, 36, 1443–1452.

    Article  Google Scholar 

  9. Dzierszinski, F., Mortuaire, M., Dendouga, N., Popescu, O., & Tomavo, S. (2001). Differential expression of two plant-like enolases with distinct enzymatic and antigenic properties during stage conversion of the protozoan parasite Toxoplasma gondii. Journal of Molecular Biology, 309, 1017–1027.

    Article  CAS  Google Scholar 

  10. Hannaert, V., Albert, M. A., Rigden, D. J., da Silva, Theresa, Giotto, M., Thiemann, O., et al. (2003). Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. European Journal of Biochemistry, 270, 3205–3213.

    Article  CAS  Google Scholar 

  11. Quiñones, W., Peña, P., Domingo-Sananes, M., Cáceres, A., Michels, P. A., Avilan, L., et al. (2007). Leishmania mexicana: molecular cloning and characterization of enolase. Experimental Parasitology, 116, 241–251.

    Article  Google Scholar 

  12. Gandhi, N. S., Young, K., Warmington, J. R., & Mancera, R. L. (2008). Characterization of sequence and structural features of the Candida krusei enolase. In Silico Biology, 8, 449–460.

    CAS  Google Scholar 

  13. Han, K., Xu, L., Yan, R., Song, X., & Li, X. (2012). Molecular cloning, expression and characterization of enolase from adult Haemonchus contortus. Research in Veterinary Science, 92, 259–265.

    Article  CAS  Google Scholar 

  14. Díaz-Martín, V., Manzano-Román, R., Oleaga, A., Encinas-Grandes, A., & Pérez-Sánchez, R. (2012). Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Veterinary Parasitology, 191, 301–314.

    Article  Google Scholar 

  15. Liu, K. J., & Shih, N. Y. (2007). The role of enolase in tissue invasion and metastasis of pathogens and tumor cells. Journal of Cancer Molecules, 3, 45–48.

    Google Scholar 

  16. Turgut-Balik, D., Sadak, D., & Celik, V. (2006). Analysis of active site loop amino acids of enzyme lactate dehydrogenase from Plasmodium vivax by site-directed mutagenesis studies. Drug Development Research, 67, 175–180.

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Grimsley, G. R., & Pace, C. N. (2003). Current protocols in protein science. Spectrophotometric determination of protein concentration. Hoboken, pp. 3.1.1–3.1.9.

  19. Leatherbarrow, R. J. (1992). Grafit version 3.0, Erithacus Software Ltd., Staines.

    Google Scholar 

  20. Akat, A., Aktas, M., Dumanli, N., & Turgut-Balik, D. (2014). Isolation, cloning and sequence analysis of enolase enzyme encoding gene from Theileria annulata for assessment of important residues of this enzyme. Journal of Faculty Veterinary Medicine Kafkas University, 20, 243–248.

    Google Scholar 

  21. Albert, M. A., Haanstra, J. R., Hannaert, V., Van Roy, J., Opperdoes, F. R., Bakker, B. M., et al. (2005). Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. Journal of Biological Chemistry, 280, 28306–28315.

    Article  CAS  Google Scholar 

  22. Dunn, C. R., Banfield, M. J., Barker, J. J., Higham, C. W., Moreton, K. M., Turgut-Balik, D., et al. (1996). The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Natural Structural Biology, 3, 912–915.

    Article  CAS  Google Scholar 

  23. Velanker, S. S., Ray, S. S., Gokhale, R. S., Balaram, H., Balaram, P., & Murthy, M. (1997). Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. Structure, 5, 751–761.

    Article  CAS  Google Scholar 

  24. Chaikuad, A., Fairweather, V., Conners, R., Joseph-Horne, T., Turgut-Balik, D., & Brady, R. L. (2005). Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. Biochemistry, 44, 16221–16228.

    Article  CAS  Google Scholar 

  25. Turgut-Balik, D., Shoemark, D. K., Moreton, K. M., Sessions, R. B., & Holbrook, J. J. (2001). Over-production of lactate dehydrogenase from Plasmodium falciparum opens a route to new antimalarials. Biotechnology Letters, 23, 917–921.

    Article  CAS  Google Scholar 

  26. Shoemark, D. K., Cliff, M. J., Sessions, R. B., & Clarke, A. R. (2007). Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum. FEBS Journal, 274, 2738–2748.

    Article  CAS  Google Scholar 

  27. Cameron, A., Read, J., Tranter, R., Winter, V. J., Sessions, R. B., Brady, R. L., et al. (2004). Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. Journal of Biological Chemistry, 279, 31429–31439.

    Article  CAS  Google Scholar 

  28. Pal-Bhowmick, I., Kumar, N., Sharma, S., Coppens, I., & Jarori, G. K. (2009). Plasmodium falciparum enolase: stage-specific expression and sub-cellular localization. Malaria Journal, 8, 1475–2875.

    Article  Google Scholar 

  29. Kessler, O., Jiang, Y., & Chasin, L. (1993). Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Molecular and Cellular Biology, 13, 6211–6222.

    CAS  Google Scholar 

  30. Kriangkum, J., Warkinton, A., Belch, A. R., & Pilarski, L. M. (2013). Alteration of introns in a hyaluronan synthase 1 (HAS1) minigene convert pre-mrna splicing to the aberrant pattern in multiple myeloma (MM): MM patients harbor similar changes. PLoS ONE, 8, e53469.

    Article  CAS  Google Scholar 

  31. Ferguson, D. J., Parmley, S. F., & Tomavo, S. (2002). Evidence for nuclear localisation of two stage-specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. International Journal for Parasitology, 32, 1399–1410.

    Article  CAS  Google Scholar 

  32. Pal-Bhowmick, I., Vora, H. K., & Jarori, G. K. (2007). Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malaria Journal, 6, 45.

    Article  Google Scholar 

  33. Maldonado, J., Marina, C., Puig, J., Maizo, Z., & Avilan, L. (2006). A study of cutaneous lesions caused by Leishmania mexicana in plasminogen-deficient mice. Experimental and Molecular Pathology, 80, 289–294.

    Article  CAS  Google Scholar 

  34. Pal-Bhowmick, I., Mehta, M., Coppens, I., Sharma, S., & Jarori, G. K. (2007). Protective properties and surface localization of Plasmodium falciparum enolase. Infection and Immunity, 75, 5500–5508.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Yildiz Technical University Scientific Research Projects Coordination Department under the Project Number: 2011-0704-KAP03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Turgut-Balik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cayir, E., Erdemir, A., Ozkan, E. et al. Cloning of Intron-Removed Enolase Gene and Expression, Purification, Kinetic Characterization of the Enzyme from Theileria annulata . Mol Biotechnol 56, 689–696 (2014). https://doi.org/10.1007/s12033-014-9747-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9747-z

Keywords

Navigation