Skip to main content
Log in

Heterologous expression and biochemical characterization of the recombinant nucleoside triphosphate diphosphohydrolase 2 (LbNTPDase2) from Leishmania (Viannia) braziliensis

  • Research
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Leishmania braziliensis is a pathogenic protozoan parasite that causes American Tegumentary Leishmaniasis (ATL), an important tropical neglected disease. ENTPDases are nucleotidases that hydrolyze intracellular and/or extracellular nucleotides. ENTPDases are known as regulators of purinergic signalling induced by extracellular nucleotides. Leishmania species have two isoforms of ENTPDase, and, particularly, ENTPDase2 seems to be involved in infectivity and virulence. In this study, we conducted the heterologous expression and biochemical characterization of the recombinant ENTPDase2 of L. braziliensis (rLbNTPDase2). Our results show that this enzyme is a canonical ENTPDase with apyrase activity, capable of hydrolysing triphosphate and diphosphate nucleotides, and it is dependent on divalent cations (calcium or magnesium). Substrate specificity was characterized as UDP>GDP>ADP>GTP>ATP=UTP. The enzyme showed optimal activity at a neutral to basic pH and was partially inhibited by suramin and DIDS. Furthermore, the low apparent Km for ADP suggests that the enzyme may play a role in adenosine-mediated signalling. The biochemical characterization of this enzyme can open new avenues for using LbNTPDase2 as a drug target.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Reithinger R, Dujardin JC, Louzir H et al (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7:581–596. https://doi.org/10.1016/S1473-3099(07)70209-8

    Article  PubMed  Google Scholar 

  2. Volpedo G, Pacheco-Fernandez T, Holcomb EA et al (2021) Mechanisms of immunopathogenesis in cutaneous leishmaniasis and post kala-azar dermal leishmaniasis (PKDL). Front Cell Infect Microbiol 11:1–16. https://doi.org/10.3389/fcimb.2021.685296

    Article  CAS  Google Scholar 

  3. Knowles AF (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7:21–45. https://doi.org/10.1007/s11302-010-9214-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309. https://doi.org/10.1007/s002100000309

    Article  CAS  PubMed  Google Scholar 

  5. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430. https://doi.org/10.1007/s11302-006-9003-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao W, Fang F, Gould T et al (2020) Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest 130:3422–3436. https://doi.org/10.1172/JCI132417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corriden R, Chen Y, Inoue Y et al (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283:28480–28486. https://doi.org/10.1074/jbc.M800039200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jhandier MN, Kruglov EA, Lavoie ÉG et al (2005) Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 280:22986–22992. https://doi.org/10.1074/jbc.M412371200

    Article  CAS  PubMed  Google Scholar 

  10. Langston HP, Ke Y, Gewirtz AT et al (2003) Secretion of IL-2 and IFN- γ , But Not IL-4, by antigen-specific T cells requires extracellular ATP. J Immunol 170:2962–2970. https://doi.org/10.4049/jimmunol.170.6.2962

    Article  CAS  PubMed  Google Scholar 

  11. Marcus AJ, Broekman MJ, Drosopoulos JHF et al (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1360. https://doi.org/10.1172/JCI119294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leite PM, Gomes RS, Figueiredo AB et al (2012) Ecto-nucleotidase activities of promastigotes from Leishmania ( Viannia ) braziliensis relates to parasite infectivity and disease clinical outcome. PLoS Negl Trop Dis 6:e1850. https://doi.org/10.1371/journal.pntd.0001850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Asai T, O’Sullivan JW, Tatibana M (1983) A potent nucleoside triphosphate hydrolase from the parasitic protozoan Toxoplasma gondii. J Biol Chem 258:6816–6822

    Article  CAS  PubMed  Google Scholar 

  14. Asai T, Miura S, Sibley LD et al (1995) Biochemical and molecular characterization of nucleoside triphosphate hydrolase isozymes from the parasitic protozoan Toxoplasma gondii. J Biol Chem 270:11391–11397. https://doi.org/10.1074/jbc.270.19.11391

    Article  CAS  PubMed  Google Scholar 

  15. Vasconcelos EG, Ferreira ST, De Carvalho TMU et al (1996) Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni: Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem 271:22139–22145. https://doi.org/10.1074/jbc.271.36.22139

    Article  CAS  PubMed  Google Scholar 

  16. Berrêdo-Pinho M, Peres-Sampaio CE, Chrispim PPM et al (2001) A mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391:16–24. https://doi.org/10.1006/abbi.2001.2384

    Article  CAS  PubMed  Google Scholar 

  17. Pinheiro CM, Martins-Duarte ES, Ferraro RB et al (2006) Leishmania amazonensis: biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Exp Parasitol 114:16–25. https://doi.org/10.1016/j.exppara.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Paes-Vieira L, Rocco-Machado N, Freitas-Mesquita AL et al (2021) Differential regulation of E-NTPdases during Leishmania amazonensis lifecycle and effect of their overexpression on parasite infectivity and virulence. Parasitol Int 85:102423. https://doi.org/10.1016/j.parint.2021.102423

    Article  CAS  PubMed  Google Scholar 

  19. Fietto JLR, DeMarco R, Nascimento IP et al (2004) Characterization and immunolocalization of an NTP diphosphohydrolase of Trypanosoma cruzi. Biochem Biophys Res Commun 316:454–460. https://doi.org/10.1016/j.bbrc.2004.02.071

    Article  CAS  PubMed  Google Scholar 

  20. Mariotini-Moura C, Bastos MS, de Castro FF et al (2014) Trypanosoma cruzi nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase-1) biochemical characterization, immunolocalization and possible role in host cell adhesion. Acta Trop 130:140–147. https://doi.org/10.1016/j.actatropica.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  21. Rezende-Soares FA, Carvalho-Campos C, Marques MJ et al (2010) Cytochemical localization of ATP diphosphohydrolase from Leishmania (Viannia) braziliensis promastigotes and identification of an antigenic and catalytically active isoform. Parasitology 137:773–783. https://doi.org/10.1017/S0031182009991661

    Article  CAS  PubMed  Google Scholar 

  22. Porcino GN, Carvalho-Campos C, Maia ACRG et al (2012) Leishmania (Viannia) braziliensis nucleoside triphosphate diphosphohydrolase (NTPDase 1): localization and in vitro inhibition of promastigotes growth by polyclonal antibodies. Exp Parasitol 132:293–299. https://doi.org/10.1016/j.exppara.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  23. Vasconcellos RDS, Mariotini-Moura C, Gomes RS et al (2014) Leishmania infantum ecto-nucleoside triphosphate diphosphohydrolase-2 is an apyrase involved in macrophage infection and expressed in infected dogs. PLoS Negl Trop Dis 8:e3309. https://doi.org/10.1371/journal.pntd.0003309

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sansom FM, Ralton JE, Sernee MF et al (2014) Golgi-located NTPDase1 of Leishmania major is required for lipophosphoglycan elongation and normal lesion development whereas secreted NTPDase2 is dispensable for virulence. PLoS Negl Trop Dis 8:e3402. https://doi.org/10.1371/journal.pntd.0003402

    Article  PubMed  PubMed Central  Google Scholar 

  25. Borges-Pereira L, Meissner KA, Wrenger C, Garcia CRS (2017) Plasmodium falciparum GFP-E-NTPDase expression at the intraerythrocytic stages and its inhibition blocks the development of the human malaria parasite. Purinergic Signal 13:267–277. https://doi.org/10.1007/s11302-017-9557-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bisaggio DFR, Peres-Sampaio CE, Meyer-Fernandes JR, Souto-Padrón T (2003) Ecto-ATPase activity on the surface of Trypanosoma cruzi and its possible role in the parasite-host cell interaction. Parasitol Res 91:273–282. https://doi.org/10.1007/s00436-003-0965-8

    Article  PubMed  Google Scholar 

  27. Maioli T, Takane EMR, Arantes E et al (2004) Immune response induced by New World Leishmania species in C57BL / 6 mice. Parasitol Res 94:207–212. https://doi.org/10.1007/s00436-004-1193-6

    Article  PubMed  Google Scholar 

  28. Marques-da-silva EDA, Camargos J, Oliveira D, Afonso C (2008) Extracellular nucleotide metabolism in Leishmania: influence of adenosine in the establishment of infection. Microbes Infect 10:850–857. https://doi.org/10.1016/j.micinf.2008.04.016

    Article  CAS  Google Scholar 

  29. Gomes RS, de Carvalho LCF, de Souza VR et al (2015) E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation. Microbes Infect 17:295–303. https://doi.org/10.1016/j.micinf.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  30. Detoni ML, Fessel MR, Maia ACRG et al (2013) An antigenic domain of the Leishmania amazonensis nucleoside triphosphate diphosphohydrolase (NTPDase 1) is associated with disease progression in susceptible infected mice. Parasitol Res 112:2773–2782. https://doi.org/10.1007/s00436-013-3445-9

    Article  CAS  PubMed  Google Scholar 

  31. Maia ACRG, Porcino GN, Detoni ML et al (2019) Leishmania infantum amastigote nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1): its inhibition as a new insight into mode of action of pentamidine. Exp Parasitol 200:1–6. https://doi.org/10.1016/j.exppara.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  32. da Silva W, da Rocha TN, de Melo AJ et al (2020) ENTPDases from pathogenic trypanosomatids and purinergic signaling: shedding light towards biotechnological applications. Curr Top Med Chem 21:213–226. https://doi.org/10.2174/1568026620666201005125146

    Article  CAS  Google Scholar 

  33. de Souza ACA, de Castro RB, dos Santos YL et al (2020) High performance of ELISA test using recombinant rLiNTPDase2 from Leishmania infantum: a phase II diagnosis of canine visceral leishmaniasis. Acta Trop 209:105535. https://doi.org/10.1016/j.actatropica.2020.105535

    Article  CAS  PubMed  Google Scholar 

  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windowns 95/98/NT. Nucleic Acids Symp Ser 41:95–98. https://doi.org/10.14601/phytopathol_mediterr-14998u1.29

    Article  CAS  Google Scholar 

  35. South J, Blass B (2001) The future of modern genomics. Blackwell, London.

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/j.cj.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  37. Ekman P, Jager O (1993) Quantification of subnanomolar amounts of phosphate bound to seryl and threonyl residues in phosphoproteins using alkaline hydrolysis and malachite green. Anal Biochem 214:138–141. https://doi.org/10.1006/abio.1993.1468

    Article  CAS  PubMed  Google Scholar 

  38. Barros FS, De Menezes LF, Pinheiro AAS et al (2000) Ectonucleotide diphosphohydrolase activities in Entamoeba histolytica. Arch Biochem Biophys 375:304–314. https://doi.org/10.1006/abbi.1999.1592

    Article  CAS  PubMed  Google Scholar 

  39. Meyer-Fernandes JR, Dutra PML, Rodrigues CO et al (1997) Mg-dependent ecto-ATPase activity in Leishmania tropica. Arch Biochem Biophys 341:40–46. https://doi.org/10.1006/abbi.1997.9933

    Article  CAS  PubMed  Google Scholar 

  40. Freitas-Mesquita AL, Meyer-Fernandes JR (2017) 3′nucleotidase/nuclease in protozoan parasites: molecular and biochemical properties and physiological roles. Exp Parasitol 179:1–6. https://doi.org/10.1016/j.exppara.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  41. Gottlieb M, Dwyer DM (1983) Evidence for Distinct 5’- and 3’-nucleotidase activities in the surface membrane fraction of Leishmania donovani promastigotes. Mol Biochem Parasitol 7:303–317. https://doi.org/10.1016/0166-6851(83)90013-0

    Article  CAS  PubMed  Google Scholar 

  42. Quiñonez-Díaz L, Mancilla-Ramírez J, Avila-García M et al (2012) Effect of ambient temperature on the clinical manifestations of experimental diffuse cutaneous leishmaniasis in a rodent model. Vector-Borne Zoonotic Dis 12:851–860. https://doi.org/10.1089/vbz.2011.0844

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen BC, Wan-Wan L (1997) Inhibition of ecto-ATPase by the P2 purinoceptor agonists, ATPγS, α,β-methylene-ATP, and AMP-PNP, in endothelial cells. Biochem Biophys Res Commun 233:442–446. https://doi.org/10.1006/bbrc.1997.6478

    Article  CAS  PubMed  Google Scholar 

  44. Santos RF, Bastos MS, Guedes PMM et al (2009) Influence of ecto-nucleoside triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and virulence. PLoS Negl Trop Dis 3:e387. https://doi.org/10.1371/journal.pntd.0000387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kukulski F, Levesque SA, Lavoie EG et al (2005) Comparative hrydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193–204. https://doi.org/10.1007/s11302-005-0383-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frick L, Hinterland L, Renner K et al (2022) Acidic microenvironments found in cutaneous Leishmania lesions curtail NO-dependent antiparasitic macrophage activity. Front Immunol 13:1–10. https://doi.org/10.3389/fimmu.2022.789366

    Article  CAS  Google Scholar 

  47. Ivanenkov VV, Murphy-Piedmonte DM, Kirley TL (2003) Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Biochemistry 42:11726–11735. https://doi.org/10.1021/bi035137r

    Article  CAS  PubMed  Google Scholar 

  48. Murphy-Piedmonte DM, Crawford PA, Kirley TL (2005) Bacterial expression, folding, purification and characterization of soluble NTPDase5 (CD39L4) ecto-nucleotidase. Biochim Biophys Acta - Proteins Proteomics 1747:251–259. https://doi.org/10.1016/j.bbapap.2004.11.017

    Article  CAS  Google Scholar 

  49. Moeckel D, Jeong SS, Sun X et al (2014) Optimizing human apyrase to treat arterial thrombosis and limit reperfusion injury without increasing bleeding risk. Sci Transl Med 6:248ra105. https://doi.org/10.1126/scitranslmed.3009246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grinthal A, Guidotti G (2000) Substitution of His59 converts CD39 apyrase into an ADPase in a quaternary structure dependent manner. Biochemistry 39:9–16. https://doi.org/10.1021/bi991751k

    Article  CAS  PubMed  Google Scholar 

  51. Hicks-Berger CA, Chadwick BP, Frischauf AM, Kirley TL (2000) Expression and characterization of soluble and membrane-bound human nucleoside triphosphate diphosphohydrolase 6 (CD39L2). J Biol Chem 275:34041–34045. https://doi.org/10.1074/jbc.M004723200

    Article  CAS  PubMed  Google Scholar 

  52. Krug U, Zebisch M, Krauss M, Sträter N (2012) Structural insight into activation mechanism of Toxoplasma gondii nucleoside triphosphate diphosphohydrolases by disulfide reduction. J Biol Chem 287:3051–3066. https://doi.org/10.1074/jbc.M111.294348

    Article  CAS  PubMed  Google Scholar 

  53. Zebisch M, Sträter N (2008) Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Proc Natl Acad Sci U S A 105:6882–6887. https://doi.org/10.1073/pnas.0802535105

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10:529–564. https://doi.org/10.1007/s11302-014-9427-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bours MJL, Swennen ELR, Di Virgilio F et al (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  56. Dosch M, Gerber J, Jebbawi F, Beldi G (2018) Mechanisms of ATP release by inflammatory cells. Int J Mol Sci 19:1–16. https://doi.org/10.3390/ijms19041222

    Article  CAS  Google Scholar 

  57. Pellegatti P, Raffaghello L, Bianchi G et al (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:1–9. https://doi.org/10.1371/journal.pone.0002599

    Article  CAS  Google Scholar 

  58. Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci Basic Clin 191:117–123. https://doi.org/10.1016/j.autneu.2015.04.011

    Article  CAS  Google Scholar 

  59. Panupinthu N, Zhao L, Possmayer F et al (2007) P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid. J Biol Chem 282:3403–3412. https://doi.org/10.1074/jbc.M605620200

    Article  CAS  PubMed  Google Scholar 

  60. Haskó G, Pacher P (2012) Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 32:865–869. https://doi.org/10.1161/ATVBAHA.111.226852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. da Silva W, Ribeiro IC, de Agripino JM et al (2023) Leishmania infantum NTPDase1 and NTPDase2 play an important role in infection and nitric oxide production in macrophages. Acta Trop 237:106732. https://doi.org/10.1016/j.actatropica.2022.106732

    Article  CAS  PubMed  Google Scholar 

  62. Marr JJ, Berens RL, Nelson DJ (1978) Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta 544:360–371. https://doi.org/10.1016/0304-4165(78)90104-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowship granted to JLRF and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for student’s scholarships.

Funding

This study was sponsored in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—grant code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by NdRTP. JVBdM, ICR, RBdC, WdS, ACAdS, and VHFdS. The first draft of the manuscript was written by NdRTP; the first revision was done by JLRF, and all authors commented on previous versions of the manuscript. The data and analyses were carefully reviewed by JLRF. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliana Lopes Rangel Fietto.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

Nancy da Rocha Torres Pavione declares that she has no conflict of interest.

João Victor Badaró de Moraes declares that he has no conflict of interest.

Isadora Cunha Ribeiro declares that she has no conflict of interest.

Raissa Barbosa de Castro declares that she has no conflict of interest.

Walmir da Silva declares that he has no conflict of interest.

Anna Cláudia Alves de Souza declares that she has no conflict of interest.

Victor Hugo Ferraz da Silva declares that he has no conflict of interest.

Raphael de Souza Vasconcellos declares that he has no conflict of interest.

Gustavo da Costa Bressan declares that he has no conflict of interest.

Juliana Lopes Rangel Fietto declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha Torres Pavione, N., de Moraes, J.V.B., Ribeiro, I.C. et al. Heterologous expression and biochemical characterization of the recombinant nucleoside triphosphate diphosphohydrolase 2 (LbNTPDase2) from Leishmania (Viannia) braziliensis. Purinergic Signalling (2023). https://doi.org/10.1007/s11302-023-09980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-023-09980-9

Keywords

Navigation