Skip to main content

Advertisement

Log in

The ROCK/GGTase Pathway Are Essential to the Proliferation and Differentiation of Neural Stem Cells Mediated by Simvastatin

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Simvastatin, a lipophilic and fermentation-derived natural statin, is reported to treat neurological disorders, such as traumatic brain injury, Parkinson’s disease (PD), Alzheimer disease (AD), etc. Recently, research also indicated that simvastatin could promote regeneration in the dentate gyrus of adult mice by Wnt/β-catenin signaling (Robin et al. in Stem Cell Reports 2:9–17, 2014). However, the effect and mechanisms by which simvastatin may affect the neural stem cells (NSCs; from the embryonic day 14.5 (E14.5) SD rat brain) are not fully understood. Here, we investigated the effects of different doses of simvastatin on the survival, proliferation, differentiation, migration, and cell cycle of NSCs as well as underlying intracellular signaling pathways. The results showed that simvastatin not only inhibits the proliferation of NSCs but also enhances the βIII-tubulin+ neuron differentiation rate. Additionally, we find that simvastatin could also promote NSC migration and induce cell cycle arrest at M2 phrase. All these effects of simvastatin on NSCs were mimicked with an inhibitor of Rho kinase (ROCK) and a specific inhibitor of geranylgeranyl transferase (GGTase). In conclusion, these data indicate that simvastatin could promote neurogenesis of neural stem cells, and these effects were mediated through the ROCK/GGTase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe K, Misawa M (2003) Astrocyte stellation induced by Rho kinase inhibitors in culture. Dev Brain Res 143:99–104

    Article  CAS  Google Scholar 

  • Bender CM, Pao MM, Jones PA (1998) Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58:95–101

    CAS  PubMed  Google Scholar 

  • Billuart P, Winter CG, Maresh A, Zhao X, Luo L (2001) Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107:195–207

    Article  CAS  PubMed  Google Scholar 

  • Braun N, Papadopoulos T, Müller-Hermelink HK (1988) Cell cycle dependent distribution of the proliferation-associated Ki-67 antigen in human embryonic lung cells. Virchows Archiv B 56:25–33

    Article  CAS  Google Scholar 

  • Casey P (1995) Mechanisms of protein prenylation and role in G protein function. Biochem Soc Trans 23:161–166

    Article  CAS  PubMed  Google Scholar 

  • Chan P-K, Aldrich MB, Yung BY (1987) Nucleolar protein B23 translocation after doxorubicin treatment in murine tumor cells. Cancer Res 47:3798–3801

    CAS  PubMed  Google Scholar 

  • Edwards PA, Ericsson J (1999) Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 68:157–185

    Article  CAS  PubMed  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

    CAS  PubMed  Google Scholar 

  • Huang F, Xiong X, Wang H, You S, Zeng H (2010) Leptin-induced vascular smooth muscle cell proliferation via regulating cell cycle, activating ERK1/2 and NF-κB. Acta Biochim Biophys Sin 42:325–331

    Article  CAS  PubMed  Google Scholar 

  • Kill IR (1996) Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J Cell Sci 109:1253–1263

    CAS  PubMed  Google Scholar 

  • Kuipers HF, Rappert AA, Mommaas AM, Van Haastert ES, Van Der Valk P, Boddeke HW, Biber KP, Van Den Elsen PJ (2006) Simvastatin affects cell motility and actin cytoskeleton distribution of microglia. Glia 53:115–123

    Article  PubMed  Google Scholar 

  • Lee MH, Cho YS, Han YM (2007) Simvastatin suppresses self-renewal of mouse embryonic stem cells by inhibiting RhoA geranylgeranylation. Stem Cells 25:1654–1663

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Liu Y, Shi M, Liu X, Li L, Liu Y, Zhao G (2012) Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J Ethnopharmacol 142:754–761

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • MacCallum DE, Hall PA (2000) The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle. J Pathol 190:537–544

    Article  CAS  PubMed  Google Scholar 

  • Matzno S, Yasuda S, Juman S, Yamamoto Y, Nagareya-Ishida N, Nakabayashi T, Matsuyama K, Tazuya-Murayama K (2005) Statin-induced apoptosis linked with membrane farnesylated Ras small G protein depletion, rather than geranylated rho protein. J Pharm Pharmacol 57:1475–1484

    Article  CAS  PubMed  Google Scholar 

  • McKenney JM (2003) Pharmacologic characteristics of statins. Clin Cardiol 26:32–38

    Article  Google Scholar 

  • Miron VE, Rajasekharan S, Jarjour AA, Zamvil SS, Kennedy TE, Antel JP (2007) Simvastatin regulates oligodendroglial process dynamics and survival. Glia 55:130–143

    Article  PubMed  Google Scholar 

  • Mullen PJ, Lüscher B, Scharnagl H, Krähenbühl S, Brecht K (2010) Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. Biochem Pharmacol 79:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus O, Stüve O, Zarnvil SS, Hartung H-P (2004) Are statins a treatment option for multiple sclerosis? The Lancet Neurol 3:369–371

    Article  CAS  PubMed  Google Scholar 

  • Robin NC, Agoston Z, Biechele TL, James RG, Berndt JD, Moon RT (2014) Simvastatin promotes adult hippocampal neurogenesis by enhancing Wnt/β-catenin signaling. Stem Cell Reports 2:9–17

    Article  CAS  PubMed  Google Scholar 

  • Roy A and Pahan K (2011) Prospects of statins in Parkinson disease. Neuroscientist 1073858410385006

  • Sato-Suzuki I, S-i M (1996) Simvastatin inhibits the division and induces neurite-like outgrowth in PC 12 cells. Neurosci Lett 220:21–24

    Article  CAS  PubMed  Google Scholar 

  • Sierra S, Ramos MC, Molina P, Esteo C, Vázquez JA, Burgos JS (2011) Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J Alzheimers Dis 23:307–318

    CAS  PubMed  Google Scholar 

  • Simons M, Schwärzler F, Lütjohann D, Von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz JB (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52:346–350

    Article  CAS  PubMed  Google Scholar 

  • Smolders I, Smets I, Maier O, vandeVen M, Steels P, Ameloot M (2010) Simvastatin interferes with process outgrowth and branching of oligodendrocytes. J Neurosci Res 88:3361–3375

    Article  CAS  PubMed  Google Scholar 

  • Storch A, Schwarz J (2002) Neural stem cells and Parkinson’s disease. J Neurol 249:iii30–iii32

    Article  Google Scholar 

  • Sun Z, Lai Y, Zeng W, Zhao D, Zuo H, Xie Z (2003) Neural stem/progenitor cells survive and differentiate better in PD rats than in normal rats. Acta Neurochir Suppl 87:169–174

    CAS  PubMed  Google Scholar 

  • Vuletic S, Riekse RG, Marcovina SM, Peskind ER, Hazzard WR, Albers JJ (2006) Statins of different brain penetrability differentially affect CSF PLTP activity. Dement Geriatr Cogn Disord 22:392–398

    Article  CAS  PubMed  Google Scholar 

  • Walker AM, Stevens JJ, Ndebele K, Tchounwou PB (2010) Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. Int J Environ Res Public Health 7:1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Fu S, Wang Y, Yu P, Hu J, Gu W, Xu X-M, Lu P (2007) Interleukin-1β mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 36:343–354

    Article  CAS  PubMed  Google Scholar 

  • Wolozin B, Wang SW, Li N-C, Lee A, Lee TA, Kazis LE (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 5:1

    Article  CAS  Google Scholar 

  • Xu C-J, Wang Y, Liao M (2011a) Effect of central myelin on the proliferation and differentiation into O4+ oligodendrocytes of GFP-NSCs. Mol Cell Biochem 358:173–178

    Article  CAS  PubMed  Google Scholar 

  • Xu CJ, Xu L, Huang LD, Li Y, Yu PP, Hang Q, Xu XM, Lu PH (2011b) Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats. Neuropathol Appl Neurobiol 37:135–155

    Article  CAS  PubMed  Google Scholar 

  • Xu CJ, Wang JL, Jin WL (2015) The neural stem cell microenvironment: focusing on axon guidance molecules and myelin-associated factors. J Mol Neurosci 56:887–897. doi:10.1007/s12031-015-0538-1

    Article  CAS  PubMed  Google Scholar 

  • Xu CJ, Wang JL, Jin WL (2016) The emerging therapeutic role of NGF in Alzheimer’s disease. Neurochem Res 41:1211–1218. doi:10.1007/s11064-016-1829-9

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Ma D, Zhang Y, Chang M and Hu L (2010) Protective effects of transplanted neural stem cells on the brain of Alzheimer’s disease rats. Neural Regen Res

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  CAS  PubMed  Google Scholar 

  • Zhi WH, Zeng YY, Lu ZH, Qu WJ, Chen WX, Chen L, Chen L (2014) Simvastatin exerts antiamnesic effect in Aβ25-35-injected mice. CNS Neurosci Ther 20:218–226

    Article  CAS  PubMed  Google Scholar 

  • Z-w P, Xue F, Wang H-n, R-g Z, Y-c C, Wang Y, L-y Z, Fan J, Tan Q-r (2013) Paroxetine up-regulates neurogenesis in hippocampus-derived neural stem cell from fetal rats. Mol Cell Biochem 375:105–113

    Google Scholar 

Download references

Acknowledgments

The project was supported by the Zhejiang Provincial Natural Science Foundation of China (LY13H090007) and Zhejiang Provincial Natural Science Foundation of China (LQ13C090004) and National Natural Sciences Foundation of China (Grant No. 81201589).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-ling Wang or Chao-Jin Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Chan-Zhang and Jian-Min Wu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wu, JM., Liao, M. et al. The ROCK/GGTase Pathway Are Essential to the Proliferation and Differentiation of Neural Stem Cells Mediated by Simvastatin. J Mol Neurosci 60, 474–485 (2016). https://doi.org/10.1007/s12031-016-0811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0811-y

Keywords

Navigation