Skip to main content

Advertisement

Log in

Fluoxetine Signature on Hippocampal MAPK Signalling in Sex-Dependent Manner

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A growing body of evidence indicates that mitogen-activated protein kinase (MAPK) participates in various stress-induced responses and is considered to be one of the pathophysiological mechanisms in depression. Surprisingly, the effect of antidepressants on MAPKs is almost unexplored, particularly from the perspective of sexes. The present study investigates the cytoplasm-nuclear distribution of MAPK family, c-Jun N-terminal kinases (JNKs) 1, 2 and 3; extracellular signal-regulated kinases (ERKs) 1 and 2; and p38 kinases, as well as their phosphoisoforms in the hippocampus of chronically stressed female and male rats and upon chronic fluoxetine treatment. Additionally, we analysed crosstalk between MAPK signalling and depressive-like behaviour which correlated with brain-derived neurotrophic factor (BDNF) expression. Our results emphasize a gender-specific and compartment-dependent response of MAPKs to stress and fluoxetine. In females, stress decreased pp38 and pJNK and induced cytosolic retention of pERKs which reduced all nuclear pMAPKs. These changes correlated with altered BDNF expression and behaviour. Similarly, in males, stress decreased pp38 but promoted nuclear translocation of pJNKs and pERKs. These stress alterations of pMAPKs in males were not associated with BDNF expression and depressive-like behaviour. Fluoxetine treatment in stressed females upregulated whole pMAPK signalling particularly those in nucleus which was followed with BDNF expression and normalization of behaviour. In stressed males, fluoxetine affected only cytosolic pJNKs, while nuclear pMAPK signalling and BDNF expression were unaffected even though fluoxetine normalized behaviour. Overall, our results suggest existence of gender-specific mechanism of fluoxetine on nuclear pMAPK/BDNF signalling and depressive-like behaviour and reinforce the antidepressant dogma that females and males respond differently to certain antidepressants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi M, Fukuda M, Nishida E (1999) Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J 18:5347–5358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adzic M, Djordjevic J, Djordjevic A, Niciforovic A, Demonacos C, Radojcic M, Krstic-Demonacos M (2009) Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J Endocrinol 202:87–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso J, Angermeyer MC, Bernert S et al (2004) Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand Suppl 109:21–27

    Article  Google Scholar 

  • Andreetta F, Barnes NM, Wren PB, Carboni L (2013) p38 MAP kinase activation does not stimulate serotonin transport in rat brain: implications for sickness behaviour mechanisms. Life Sci 93:30–37

    Article  CAS  PubMed  Google Scholar 

  • Bale TL (2006) Stress sensitivity and the development of affective disorders. Horm Behav 50:529–533

    Article  CAS  PubMed  Google Scholar 

  • Battiwalla M, Hahn T, Radovic M et al (2006) Human leukocyte antigen (HLA) DR15 is associated with reduced incidence of acute GVHD in HLA-matched allogeneic transplantation but does not impact chronic GVHD incidence. Blood 107:1970–1973

    Article  CAS  PubMed  Google Scholar 

  • Bruchas MR, Schindler AG, Shankar H et al (2011) Selective p38alpha MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71:498–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18:664–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brust TB, Cayabyab FS, MacVicar BA (2007) C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus. Neuropharmacology 53:906–917

    Article  CAS  PubMed  Google Scholar 

  • Budziszewska B, Szymanska M, Leskiewicz M et al (2010) The decrease in JNK- and p38-MAP kinase activity is accompanied by the enhancement of PP2A phosphate level in the brain of prenatally stressed rats. J Physiol Pharmacol 61:207–215

    CAS  PubMed  Google Scholar 

  • Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 34(Suppl 1):S208–S216

    Article  CAS  PubMed  Google Scholar 

  • Djordjevic S, Kovacevic I, Miljkovic B, Vuksanovic J, Pokrajac M (2005) Liquid chromatographic-mass spectrometric method for the determination of fluoxetine and norfluoxetine in human plasma: application to clinical study. Farmaco 60:345–349

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Malberg J, Nakagawa S, D’Sa C (2000) Neuronal plasticity and survival in mood disorders. Biol Psychiatry 48:732–739

    Article  CAS  PubMed  Google Scholar 

  • Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61:661–670

    Article  CAS  PubMed  Google Scholar 

  • Duric V, Banasr M, Licznerski P et al (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16:1328–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77:916–928

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Pandey GN (2006) ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 11:86–98

    Article  CAS  PubMed  Google Scholar 

  • Feng P, Guan Z, Yang X, Fang J (2003) Impairments of ERK signal transduction in the brain in a rat model of depression induced by neonatal exposure of clomipramine. Brain Res 991:195–205

    Article  CAS  PubMed  Google Scholar 

  • Flood DG, Finn JP, Walton KM et al (1998) Immunolocalization of the mitogen-activated protein kinases p42MAPK and JNK1, and their regulatory kinases MEK1 and MEK4, in adult rat central nervous system. J Comp Neurol 398:373–392

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16:1901–1908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fumagalli F, Molteni R, Calabrese F, Frasca A, Racagni G, Riva MA (2005) Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J Neurochem 93:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Galeotti N, Ghelardini C (2012) Selective modulation of the PKCvarepsilon/p38MAP kinase signaling pathway for the antidepressant-like activity of amitriptyline. Neuropharmacology 62:289–296

    Article  CAS  PubMed  Google Scholar 

  • Goel N, Bale TL (2009) Examining the intersection of sex and stress in modelling neuropsychiatric disorders. J Neuroendocrinol 21:415–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase signaling in neurons. Curr Opin Neurobiol 9:544–553

    Article  CAS  PubMed  Google Scholar 

  • Hirsch DD, Stork PJ (1997) Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J Biol Chem 272:4568–4575

    Article  CAS  PubMed  Google Scholar 

  • Hisaoka K, Nishida A, Koda T et al (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 79:25–34

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Kolch W (2000) Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol 58:659–668

    CAS  PubMed  Google Scholar 

  • Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628

    Article  CAS  PubMed  Google Scholar 

  • Iio W, Matsukawa N, Tsukahara T, Kohari D, Toyoda A (2011) Effects of chronic social defeat stress on MAP kinase cascade. Neurosci Lett 504:281–284

    Article  CAS  PubMed  Google Scholar 

  • Irusen E, Matthews JG, Takahashi A, Barnes PJ, Chung KF, Adcock IM (2002) p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 109:649–657

    Article  CAS  PubMed  Google Scholar 

  • Kessler RC (2003) Epidemiology of women and depression. J Affect Disord 74:5–13

    Article  PubMed  Google Scholar 

  • Kondoh K, Torii S, Nishida E (2005) Control of MAP kinase signaling to the nucleus. Chromosoma 114:86–91

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signaling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  CAS  PubMed  Google Scholar 

  • Lenormand P, Brondello JM, Brunet A, Pouyssegur J (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol 142:625–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Zhang L, Huang Q (2009) Differential expression of mitogen-activated protein kinase signaling pathway in the hippocampus of rats exposed to chronic unpredictable stress. Behav Brain Res 205:32–37

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Miller AL, Webb MS, Copik AJ et al (2005) p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 19:1569–1583

    Article  CAS  PubMed  Google Scholar 

  • Mitic M, Simic I, Djordjevic J, Radojcic MB, Adzic M (2013) Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats. Neuropharmacology 70:100–111

    Article  CAS  PubMed  Google Scholar 

  • Moutsatsou P, Psarra AM, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE (2001) Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 386:69–78

    Article  CAS  PubMed  Google Scholar 

  • Muda M, Theodosiou A, Rodrigues N et al (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271:27205–27208

    Article  CAS  PubMed  Google Scholar 

  • Oitzl MS, Champagne DL, van der Veen R, de Kloet ER (2010) Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev 34:853–866

    Article  CAS  PubMed  Google Scholar 

  • Ortiz J, Harris HW, Guitart X, Terwilliger RZ, Haycock JW, Nestler EJ (1995) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J Neurosci 15:1285–1297

    CAS  PubMed  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    Article  CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    CAS  PubMed  Google Scholar 

  • Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signaling. Biochem Pharmacol 64:755–763

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Lin W, Li J, Pan Y, Wang W (2006) The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress. Behav Brain Res 175:233–240

    Article  CAS  PubMed  Google Scholar 

  • Rogatsky I, Logan SK, Garabedian MJ (1998) Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun N-terminal kinase. Proc Natl Acad Sci U S A 95:2050–2055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143

    Article  CAS  PubMed  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spencer RL, Kalman BA, Cotter CS, Deak T (2000) Discrimination between changes in glucocorticoid receptor expression and activation in rat brain using western blot analysis. Brain Res 868:275–286

    Article  CAS  PubMed  Google Scholar 

  • Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    Article  CAS  PubMed  Google Scholar 

  • Taler M, Bar M, Korob I et al (2008) Evidence for an inhibitory immunomodulatory effect of selected antidepressants on rat splenocytes: possible relevance to depression and hyperactive-immune disorders. Int Immunopharmacol 8:526–533

    Article  CAS  PubMed  Google Scholar 

  • Tiraboschi E, Tardito D, Kasahara J et al (2004) Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades. Neuropsychopharmacology 29:1831–1840

    Article  CAS  PubMed  Google Scholar 

  • Todorovic C, Sherrin T, Pitts M, Hippel C, Rayner M, Spiess J (2009) Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient mice. Neuropsychopharmacology 34:1416–1426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44

    Article  CAS  PubMed  Google Scholar 

  • Trzeciak AR, Nyaga SG, Jaruga P, Lohani A, Dizdaroglu M, Evans MK (2004) Cellular repair of oxidatively induced DNA base lesions is defective in prostate cancer cell lines, PC-3 and DU-145. Carcinogenesis 25:1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17:683–710

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Nakagawa K, Watanabe T et al (2001) Impaired synergistic activation of stress-activated protein kinase SAPK/JNK in mouse embryonic stem cells lacking SEK1/MKK4: different contribution of SEK2/MKK7 isoforms to the synergistic activation. J Biol Chem 276:30892–30897

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wu H, Miller AH (2004) Interleukin 1alpha (IL-1alpha) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  • Willoughby EA, Collins MK (2005) Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2. J Biol Chem 280:25651–25658

    Article  CAS  PubMed  Google Scholar 

  • Young EA, Korszun A (2002) The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinol Metab Clin N Am 31:63–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science of the Republic of Serbia, grant no. III41029.

Conflict of Interest

All authors have no financial interests or potential conflicts of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Adzic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitic, M., Lukic, I., Bozovic, N. et al. Fluoxetine Signature on Hippocampal MAPK Signalling in Sex-Dependent Manner. J Mol Neurosci 55, 335–346 (2015). https://doi.org/10.1007/s12031-014-0328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0328-1

Keywords

Navigation