Skip to main content
Log in

Using Protein Misfolding Cyclic Amplification Generates a Highly Neurotoxic PrP Dimer Causing Neurodegeneration

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Under the “protein-only” hypothesis, prion-based diseases are proposed to result from an infectious agent that is an abnormal isoform of the prion protein in the scrapie form, PrPSc. However, since PrPSc is highly insoluble and easily aggregates in vivo, this view appears to be overly simplistic, implying that the presence of PrPSc may indirectly cause neurodegeneration through its intermediate soluble form. We generated a neurotoxic PrP dimer with partial pathogenic characteristics of PrPSc by protein misfolding cyclic amplification in the presence of 1-palmitoyl-2-oleoylphosphatidylglycerol consisting of recombinant hamster PrP (23–231). After intracerebral injection of the PrP dimer, wild-type hamsters developed signs of neurodegeneration. Clinical symptoms, necropsy findings, and histopathological changes were very similar to those of transmissible spongiform encephalopathies. Additional investigation showed that the toxicity is primarily related to cellular apoptosis. All results suggested that we generated a new neurotoxic form of PrP, PrP dimer, which can cause neurodegeneration. Thus, our study introduces a useful model for investigating PrP-linked neurodegenerative mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathogens 5:e1000421

    Article  PubMed  Google Scholar 

  • Benetti F, Legname G (2009) De novo mammalian prion synthesis. Prion 3:213–219

    Article  PubMed  CAS  Google Scholar 

  • Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379(6563):339–343

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saá P, Soto C (2005) Detection of prions in blood. Nat Med 11:982–985

    PubMed  CAS  Google Scholar 

  • Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Chiesa R, Piccardo P, Quaglio E, Drisaldi B, Si-Hoe SL, Takao M, Ghetti B, Harris DA (2003) Molecular distinction between pathogenic and infectious properties of the prion protein. J Virol 77:7611–7622

    Article  PubMed  CAS  Google Scholar 

  • Cobb NJ, Surewicz WK (2009) Prion diseases and their bBiochemical mechanisms. Biochemistry 48:2574–2585

    Article  PubMed  CAS  Google Scholar 

  • Collinge J, Palmer MS, Sidle K, Gowland I, Medori R, Ironside J, Lantos P (1995) Transmission of fatal familial insomnia to laboratory animals. Lancet 346:569

    Article  PubMed  CAS  Google Scholar 

  • Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci 104:9741–9746

    Article  PubMed  CAS  Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720

    Article  PubMed  CAS  Google Scholar 

  • Florio T, Thellung S, Amico C, Robello M, Salmona M, Bugiani O, Tagliavini F, Forloni G, Schettini G (1998) Prion protein fragment 106–126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res 54:341–352

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb LG et al (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Sci (New York, NY) 258:806–808

    Article  CAS  Google Scholar 

  • Haık S, Peyrin J, Lins L, Rosseneu M, Brasseur R, Langeveld J, Tagliavini F, Deslys J, Lasmezas C, Dormont D (2000) Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis 7:644–656

    Article  PubMed  Google Scholar 

  • Jeffrey M, McGovern G, Siso S, Gonzalez L (2011) Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 121:131–134

    Article  Google Scholar 

  • Kazlauskaite J, Young A, Gardner CE, Macpherson JV, Vénien-Bryan C, Pinheiro TJT (2005) An unusual soluble β-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells. Biochem Biophys Res Commun 328:292–305

    Article  PubMed  CAS  Google Scholar 

  • Lasmézas CI, Deslys JP, Robain O, Jaegly A, Beringue V, Peyrin JM, Fournier JG, Hauw JJ, Rossier J, Dormont D (1997) Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275:402–404

    Article  PubMed  Google Scholar 

  • Lucassen R, Nishina K, Supattapone S (2003) In vitro amplification of protease-resistant prion protein requires free sulfhydryl groups. Biochemistry 42:4127–4135

    Article  PubMed  CAS  Google Scholar 

  • Mallucci G, Dickinson A, Linehan J, Klöhn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  PubMed  CAS  Google Scholar 

  • Manson JC, Jamieson E, Baybutt H, Tuzi NL, Barron R, McConnell I, Somerville R, Ironside J, Will R, Sy MS (1999) A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J 18:6855–6864

    Article  PubMed  CAS  Google Scholar 

  • Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathogens 5:e1000426

    Article  PubMed  Google Scholar 

  • Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Sci (New York, NY) 216:136

    Article  CAS  Google Scholar 

  • Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    Article  PubMed  CAS  Google Scholar 

  • Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrPSc molecules with different conformations. Nat Med 4:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Anderes L, Suardi S, Cardone F, Castilla J, Frossard MJ, Peano S, Saa P, Limido L, Carbonatto M (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642

    Article  PubMed  CAS  Google Scholar 

  • Tateishi J, Kitamoto T (1995) Inherited prion diseases and transmission to rodents. Brain Pathol 5:53–59

    Article  PubMed  CAS  Google Scholar 

  • Tateishi J, Kitamoto T, Hoque M, Furukawa H (1996) Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46:532–537

    Article  PubMed  CAS  Google Scholar 

  • Telling GC, Haga T, Torchia M, Tremblay P, DeArmond SJ, Prusiner SB (1996) Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 10:1736–1750

    Article  PubMed  CAS  Google Scholar 

  • Veith NM, Plattner H, Stuermer CAO, Schulz-Schaeffer WJ, Bürkle A (2009) Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J cell biol 88:45–63

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Weber P, Giese A, Piening N, Mitteregger G, Thomzig A, Beekes M, Kretzschmar HA (2007) Generation of genuine prion infectivity by serial PMCA. Vet Microbiol 123:346–357

    Article  PubMed  CAS  Google Scholar 

  • Weissmann C (1991) A 'unified theory' of prion propagation. Nature 352(6337):679–683

    Article  PubMed  CAS  Google Scholar 

  • Weissmann C, Enari M, Klohn P, Rossi D, Flechsig E (2002) Molecular biology of prions. Acta Neurobiol Exp 62:153–166

    Google Scholar 

  • Zahn R, von Schroetter C, Wüthrich K (1997) Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett 417:400–404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (projects 31001048, 31172293, and 31272532), the Specialized Research Fund for the Doctoral Program of Higher Education and (SRFDP, project 20100008120002), the Foundation of Chinese Ministry of Science and Technology (project 2011BAI15B01), and the Program for Cheung Kong Scholars and Innovative Research Team in University of China (IRT0866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeMing Zhao.

Additional information

XiuJin Yang and LiFeng Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Yang, L., Zhou, X. et al. Using Protein Misfolding Cyclic Amplification Generates a Highly Neurotoxic PrP Dimer Causing Neurodegeneration. J Mol Neurosci 51, 655–662 (2013). https://doi.org/10.1007/s12031-013-0039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0039-z

Keywords

Navigation