Skip to main content
Log in

Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The transmissible spongiform encephalopathies (TSEs) or prion diseases of animals are characterised by CNS spongiform change, gliosis and the accumulation of disease-associated forms of prion protein (PrPd). Particularly in ruminant prion diseases, a wide range of morphological types of PrPd depositions are found in association with neurons and glia. When light microscopic patterns of PrPd accumulations are correlated with sub-cellular structure, intracellular PrPd co-localises with lysosomes while non-intracellular PrPd accumulation co-localises with cell membranes and the extracellular space. Intracellular lysosomal PrPd is N-terminally truncated, but the site at which the PrPd molecule is cleaved depends on strain and cell type. Different PrPd cleavage sites are found for different cells infected with the same agent indicating that not all PrPd conformers code for different prion strains. Non-intracellular PrPd is full-length and is mainly found on plasma-lemmas of neuronal perikarya and dendrites and glia where it may be associated with scrapie-specific membrane pathology. These membrane changes appear to involve a redirection of the predominant axonal trafficking of normal cellular PrP and an altered endocytosis of PrPd. PrPd is poorly excised from membranes, probably due to increased stabilisation on the membrane of PrPd complexed with other membrane ligands. PrPd on plasma-lemmas may also be transferred to other cells or released to the extracellular space. It is widely assumed that PrPd accumulations cause neurodegenerative changes that lead to clinical disease. However, when different animal prion diseases are considered, neurological deficits do not correlate well with any morphological type of PrPd accumulation or perturbation of PrPd trafficking. Non-PrPd-associated neurodegenerative changes in TSEs include vacuolation, tubulovesicular bodies and terminal axonal degeneration. The last of these correlates well with early neurological disease in mice, but such changes are absent from large animal prion disease. Thus, the proximate cause of clinical disease in animal prion disease is uncertain, but may not involve PrPd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Asuni AA, Cunningham C, Vigneswaran P, Perry VH, O’Connor V (2008) Unaltered SNARE complex formation in an in vivo model of prion disease. Brain Res 1233:1–7

    Article  CAS  PubMed  Google Scholar 

  2. Baker HF, Duchen LW, Jacobs JM, Ridley RM (1990) Spongiform encephalopathy transmitted experimentally from Creutzfeldt-Jakob and familial Gerstmann–Sträussler–Scheinker Diseases. Brain 113:1891–1909

    Article  PubMed  Google Scholar 

  3. Baringer JR, Prusiner SB, Wong JS (1981) Scrapie-associated particles in postsynaptic processes. J Neuropathol Exp Neurol 40:281–288

    Article  CAS  PubMed  Google Scholar 

  4. Baron T, Bencsik A, Vulin J et al (2008) A C-terminal protease-resistant prion fragment distinguishes ovine “CH1641-like” scrapie from bovine classical and l-type BSE in ovine transgenic mice. PLoS Pathog 4:e1000137

    Article  PubMed  CAS  Google Scholar 

  5. Barron RM, Campbell SL, King D et al (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282:35878–35886

    Article  CAS  PubMed  Google Scholar 

  6. Bastian FO (1979) Spiroplasma-like inclusions in Creutzfeldt–Jakob disease. Arch Pathol Lab Med 103:665–669

    CAS  PubMed  Google Scholar 

  7. Beck E, Daniel PM, Davey AJ, Gajdusek DC, Gibbs CJ Jr (1982) The pathogenesis of transmissible spongiform encephalopathy an ultrastructural study. Brain 105:755–786

    Article  PubMed  Google Scholar 

  8. Begara-McGorum I, González L, Simmons M, Hunter N, Houston F, Jeffrey M (2002) Vacuolar lesion profile in sheep scrapie: Factors influencing its variation and relationship to disease-specific PrP accumulation. J Comp Pathol 127:59–68

    Article  CAS  PubMed  Google Scholar 

  9. Belichenko PV, Brown D, Jeffrey M, Fraser JR (2000) Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice. Neuropathol Appl Neurobiol 26:143–149

    Article  CAS  PubMed  Google Scholar 

  10. Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR (1999) Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt–Jakob disease. Neurobiol Dis 6:269–279

    Article  CAS  PubMed  Google Scholar 

  11. Benestad SL, Sarradin P, Thu B, Schonheit J, Tranulis MA, Bratberg B (2003) Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. Vet Rec 153:202–208

    Article  CAS  PubMed  Google Scholar 

  12. Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. Gen Virol 73:329–334

    Article  Google Scholar 

  13. Bouzamondo Bernstein E, Hopkins SD, Spilman P et al (2004) The neurodegeneration sequence in prion diseases: Evidence from functional, morphological and ultrastructural studies of the GABAergic system. J Neuropathol Exp Neurol 63:882–899

    CAS  PubMed  Google Scholar 

  14. Bradley R (1996) Experimental transmission of bovine spongiform encephalopathy. In: Court L, Dodet B (eds) Transmissible subacute spongiform encephalopathies: prion diseases. Elsevier Editions Scientifiques, Paris, pp 51–56

    Google Scholar 

  15. Brandner S, Isenmann S, Raeber A et al (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343

    Article  CAS  PubMed  Google Scholar 

  16. Brown D, Belichenko P, Sales J, Jeffrey M, Fraser AR (2001) Early loss of dendritic spines in murine scrapie revealed by confocal analysis. Neuroreport 12:179–183

    Article  CAS  PubMed  Google Scholar 

  17. Bruce ME, McBride PA, Farquhar CF (1989) Precise targeting of the pathology of the sialoglycoprotein PrP, and vacuolar degeneration in mouse scrapie. Neurosci Lett 102:1–6

    Article  CAS  PubMed  Google Scholar 

  18. Bruce M, Chree A, McConnell I, Foster J, Pearson G, Fraser H (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Phil Trans Roy Soc Lond B 343:405–411

    Article  CAS  Google Scholar 

  19. Bruce M, Chree A, Williams ES, Fraser H (2000) Perivascular PrP amyloid in the brains of mice infected with chronic wasting disease. Brain Pathol 10:662–663

    Google Scholar 

  20. Bruce ME (1993) Scrapie strain variation and mutation. Br Med Bull 49:822–839

    CAS  PubMed  Google Scholar 

  21. Bruce ME, Fraser H (1991) Scrapie strain variation and its implications. Curr Top Microbiol Immunol 172:125–138

    CAS  PubMed  Google Scholar 

  22. Buschmann A, Gretzschel A, Biacabe AG et al (2006) Atypical BSE in Germany-proof of transmissibility and biochemical characterization. Vet Microbiol 117:103–116

    Article  CAS  PubMed  Google Scholar 

  23. Carlson GA, Westaway D, DeArmond SJ, Peterson-Torchia M, Prusiner SB (1989) Primary structure of prion protein may modify scrapie isolate properties. Proc Natl Acad Sci USA 86:7475–7479

    Article  CAS  PubMed  Google Scholar 

  24. Casalone C, Caramelli M, Crescio MI, Spencer YI, Simmons MM (2006) BSE immunohistochemical patterns in the brainstem: a comparison between UK and Italian cases. Acta Neuropathol 111:444–449

    Article  CAS  PubMed  Google Scholar 

  25. Casalone C, Zanusso G, Acutis P et al (2004) Identification of a second bovine amyloidotic spongiform encephalopathy: Molecular similarities with sporadic Creutzfeldt–Jakob disease. Proc Nat Acad Sci USA 101:3065–3070

    Article  CAS  PubMed  Google Scholar 

  26. Caughey B, Baron GS, Chesebro B, Jeffrey M (2009) Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 78:177–204

    Article  CAS  PubMed  Google Scholar 

  27. Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-Terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65:6597–6603

    CAS  PubMed  Google Scholar 

  28. Chesebro B, Race B, Meade-White K et al. (2010) Fatal transmissible amyloid encephalopathy: a new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathog 6(3):e1000800

    Google Scholar 

  29. Chesebro B, Trifilo M, Race R et al (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439

    Article  CAS  PubMed  Google Scholar 

  30. Chiesa R, Piccardo P, Ghetti B, Harris DA (1999) A transgenic mouse model of a familial prion disease with an insertional mutation. In: Iqbal K, Swaab DF, Winblad B, Wisniewski HM (eds) Alzheimers disease and related disorders. Wiley, West Sussex, pp 569–580

    Google Scholar 

  31. Chiesa R, Piccardo P, Quaglio E et al (2003) Molecular distinction between pathogenic and infectious properties of the prion protein. J Virol 77:7611–7622

    Article  CAS  PubMed  Google Scholar 

  32. Cunningham AA, Kirkwood JK, Dawson M, Spencer YI, Green RB, Wells GAH (2004) Bovine Spongiform encephalopathy infectivity in greater kudu (Tragelaphus strepsiceros). Emerg Infect Dis 10:1044–1048

    PubMed  Google Scholar 

  33. Cunningham C, Deacon R, Wells H et al (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155

    Article  CAS  PubMed  Google Scholar 

  34. David-Farreira JF, David-Farreira KL, Gibbs CJ (1968) Scrapie in mice: ultrastructural observations in the cerebral cortex. Proc Soc Exp Biol Med 127:313–320

    Google Scholar 

  35. DeArmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB (1985) Identification of prion amyloid filaments in scrapie-infected brain. Cell 41:221–235

    Article  CAS  PubMed  Google Scholar 

  36. Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104:9741–9746

    Article  CAS  PubMed  Google Scholar 

  37. Dickinson AG (1976) Scapie in sheep and goats. In: Kimberlin RH (ed) Slow virus diseases of animals and man. North Holland, Amsterdam, pp 209–241

    Google Scholar 

  38. Diedrich JF, Bendheim PE, Kim YS, Carp RI, Haase AT (1991) Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc Nat Acad Sci USA 88:375–379

    Article  CAS  PubMed  Google Scholar 

  39. Doerr-Schott J, Kitamoto T, Tateishi J, Boellaard JW, Heldt N, Lichte C (1990) Immunogold light and electron microscopic detection of amyloid plaques in transmissible spongiform encephalopathies. Neuropathol Appl Neurobiol 16:85–89

    Article  CAS  PubMed  Google Scholar 

  40. Ersdal C, Goodsir CM, Simmons MM, McGovern G, Jeffrey M (2009) Abnormal prion protein is associated with changes of plasma membranes and endocytosis in bovine spongiform encephalopathy (BSE)-affected cattle brains. Neuropathol Appl Neurobiol 35:259–271

    Article  CAS  PubMed  Google Scholar 

  41. Ersdal C, Simmons MM, González L, Goodsir CM, Martin S, Jeffrey M (2004) Relationships between ultrastructural scrapie pathology and patterns of abnormal prion protein accumulation. Acta Neuropathol 107:428–438

    Article  PubMed  Google Scholar 

  42. Ersdal C, Simmons MM, Goodsir C, Martin S, Jeffrey M (2003) Sub-cellular pathology of scrapie: coated pits are increased in PrP codon 136 alanine homozygous scrapie-affected sheep. Acta Neuropathol 106:17–28

    PubMed  Google Scholar 

  43. Ersdal C, Ulvund MJ, Benestad SL, Tranulis MA (2003) Accumulation of pathogenic prion protein (PrPSc) in nervous and lymphoid tissues of sheep with subclinical scrapie. Vet Pathol 40:164–174

    Article  CAS  PubMed  Google Scholar 

  44. Fevrier B, Vilette D, Archer F et al (2004) Cells release prions in association with exosomes. Proc Nat Acad Sci USA 101:9683–9688

    Article  CAS  PubMed  Google Scholar 

  45. Flechsig E, Shmerling D, Hegyi I et al (2000) Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27:399–408

    Article  CAS  PubMed  Google Scholar 

  46. Forloni G, Angeretti N, Chiesa R et al (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  47. Fuhrmann M, Mitteregger G, Kretzschmar H, Herms J (2007) Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci 27:6224–6233

    Article  CAS  PubMed  Google Scholar 

  48. Galvan C, Camoletto PG, Dotti CG, Aguzzi A, Ledesma MD (2005) Proper axonal distribution of PrP(C) depends on cholesterol-sphingomyelin-enriched membrane domains and is developmentally regulated in hippocampal neurons. Mol Cell Neurosci 30:304–315

    Article  CAS  PubMed  Google Scholar 

  49. Giaccone GG, Verga L, Bugiani O et al (1992) Prion protein preamyloid and amyloid deposits in Gerstmann–Straussler–Scheinker disease, Indiana kindred. Proc Nat Acad Sci USA 89:9349–9353

    Article  CAS  PubMed  Google Scholar 

  50. Godsave SF, Wille H, Kujala P et al (2008) Cryo-Immunogold electron microscopy for prions: toward identification of a conversion site. J Neurosci 28:12489–12499

    Article  CAS  PubMed  Google Scholar 

  51. González L, Martin S, Begara McGorum I et al (2002) Effects of agent strain and host genotype on PrP accumulation in the brain of sheep naturally and experimentally affected with scrapie. J.Comp Pathol 126:17–29

    Article  PubMed  Google Scholar 

  52. González L, Martin S, Houston FE et al (2005) Phenotype of disease-associated PrP accumulation in the brain of bovine spongiform encephalopathy experimentally infected sheep. J Gen Virol 86:827–838

    Article  PubMed  CAS  Google Scholar 

  53. González L, Martin S, Jeffrey M (2003) Distinct profiles of PrPd immunoreactivity in the brain of scrapie-and BSE-infected sheep: implications for differential cell targeting and PrP processing. J Gen Virol 84:1339–1350

    Article  PubMed  CAS  Google Scholar 

  54. González L, Terry L, Jeffrey M (2005) Expression of prion protein in the gut of mice infected orally with the 301v murine strain of the bovine spongiform encephalopathy agent. J Comp Pathol 132:273–282

    Article  PubMed  CAS  Google Scholar 

  55. Gray A, Francis RJ, Scholtz CL (1980) Spiroplasma and Creutzfeldt–Jakob disease. Lancet 2:152

    Article  CAS  PubMed  Google Scholar 

  56. Gray BC, Siskova Z, Perry VH, O’Connor V (2009) Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 35:63–74

    Article  CAS  PubMed  Google Scholar 

  57. Green KM, Browning SR, Seward TS et al (2008) The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J Gen Virol 89:598–608

    Article  CAS  PubMed  Google Scholar 

  58. Groschup MH, Weiland F, Straub OC, Pfaff E (1996) Detection of scrapie agent in the peripheral nervous system of a diseased sheep. Neurobiol Dis 3:191–195

    Article  CAS  PubMed  Google Scholar 

  59. Haeberle AM, Ribaut Barassin C, Bombarde G et al (2000) Synaptic prion protein immuno-reactivity in the rodent cerebellum. Microsc Res Technique 50:66–75

    Article  CAS  Google Scholar 

  60. Harris DA (2003) Trafficking, turnover and membrane topology of PrP. Br Med Bull 66:71

    Article  CAS  PubMed  Google Scholar 

  61. Hope J, Wood SCER, Birkett CR et al (1999) Molecular analysis of ovine prion protein identifies similarities between BSE and an experimental isolate of natural scrapie, CH1641. J Gen Virol 80:1–4

    CAS  PubMed  Google Scholar 

  62. Hunter N (1991) Scrapie and GSS—Gerstmann–Straussler–Scheinker syndrome—the importance of protein. Trends Neurosci 14:389–390

    Article  CAS  PubMed  Google Scholar 

  63. Ilangumaran S, Robinson PJ, Hoessli DC (1996) Transfer of exogenous glycosylphos-phatidylinositol (GPI)-linked molecules to plasma membranes. Trends Cell Biol 6:163–167

    Article  CAS  PubMed  Google Scholar 

  64. Jacobs JG, Langeveld JP, Biacabe AG et al (2007) Molecular discrimination of atypical bovine spongiform encephalopathy strains from a geographical region spanning a wide area in Europe. J Clin Microbiol 45:1821–1829

    Article  CAS  PubMed  Google Scholar 

  65. Jeffrey M, Fraser JR (2000) Tubulovesicular particles occur early in the incubation period of murine scrapie. Acta Neuropathol 99:525–528

    Article  CAS  PubMed  Google Scholar 

  66. Jeffrey M, Fraser JR, Halliday WG, Fowler N, Goodsir CM, Brown DA (1995) Early unsuspected neuron and axon terminal loss in scrapie-infected mice revealed by morphometry and immunocytochemistry. Neuropathol Appl Neurobiol 21:41–49

    Article  CAS  PubMed  Google Scholar 

  67. Jeffrey M, González L, Chong A et al (2006) Ovine infection with the agents of scrapie (CH1641 isolate) and bovine spongiform encephalopathy: immunochemical similarities can be resolved by immunohistochemistry. J Comp Pathol 134:17–29

    Article  CAS  PubMed  Google Scholar 

  68. Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Scott JR, Halliday WG (1992) Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. Neurosci Lett 147:106–109

    Article  CAS  PubMed  Google Scholar 

  69. Jeffrey M, Goodsir C, McGovern G, Barmada SJ, Medrano AZ, Harris DA (2009) Prion protein with an insertional mutation accumulates on axonal and dendritic plasmalemma and is associated with distinctive ultrastructural changes. Am J Pathol 175:1208–1217

    Article  CAS  PubMed  Google Scholar 

  70. Jeffrey M, Goodsir CM, Bruce ME, McBride PA (1993) Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice [Abstract]. Neuropathol Appl Neurobiol 19:188

    Google Scholar 

  71. Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Farquhar C (1994) Morphogenesis of amyloid plaques in 87V murine scrapie. Neuropathol Appl Neurobiol 20:535–542

    Article  CAS  PubMed  Google Scholar 

  72. Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Fraser JR (1996) Subcellular localization and toxicity of pre-amyloid and fibrillar prion protein accumulations in murine scrapie. In: Court L, Dodet B (eds) Transmissible subacute spongiform encephalopathies: prion diseases. Elsevier Editions Scientifiques, Paris, pp 129–135

    Google Scholar 

  73. Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Fraser JR (1997) In vivo toxicity of prion protein in murine scrapie: Ultrastructural and immunogold studies. Neuropathol Appl Neurobiol 23:93–101

    Article  CAS  PubMed  Google Scholar 

  74. Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Scott JR, Halliday WG (1994) Correlative light and electron microscopy studies of PrP localisation in 87V scrapie. Brain Res 656:329–343

    Article  CAS  PubMed  Google Scholar 

  75. Jeffrey M, Goodsir CM, Fowler N, Hope J, Bruce ME, McBride PA (1996) Ultrastructural immuno-localization of synthetic prion protein peptide antibodies in 87V murine scrapie. Neurodegeneration 5:101–109

    Article  CAS  PubMed  Google Scholar 

  76. Jeffrey M, Goodsir CM, Holliman A et al (1998) Determination of the frequency and distribution of vascular and parenchymal amyloid with polyclonal and N-terminal-specific PrP antibodies in scrapie-affected sheep and mice. Vet Rec 142:534–537

    Article  CAS  PubMed  Google Scholar 

  77. Jeffrey M, Goodsir CM, Race RE, Chesebro B (2004) Scrapie-specific neuronal lesions are independent of neuronal PrP expression. Ann Neurol 55:781–792

    Article  CAS  PubMed  Google Scholar 

  78. Jeffrey M, Halliday WG, Bell J et al (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54

    Article  CAS  PubMed  Google Scholar 

  79. Jeffrey M, Halliday W (1994) Numbers of neurons in vacuolated and non vacuolated neuroanatomical nuclei in bovine spongiform encephalopathy affected brains. J Comp Pathol 110:287–293

    Article  CAS  PubMed  Google Scholar 

  80. Jeffrey M, Martin S, González L (2003) Cell-associated variants of disease-specific prion protein immunolabelling are found in different sources of sheep transmissible spongiform encephalopathy. J Gen Virol 84:1033–1046

    Article  CAS  PubMed  Google Scholar 

  81. Jeffrey M, Martin S, González L et al (2006) Immunohistochemical features of Prp(d) accumulation in natural and experimental goat transmissible spongiform encephalopathies. J Comp Pathol 134:171–181

    Article  CAS  PubMed  Google Scholar 

  82. Jeffrey M, Martin S, González L, Ryder SJ, Bellworthy SJ, Jackman R (2001) Differential diagnosis of infections with the bovine spongiform encephalopathy (BSE) and scrapie agents in sheep. J Comp Pathol 125:271–284

    Article  CAS  PubMed  Google Scholar 

  83. Jeffrey M, McGovern G, Goodsir CM, González L (2009) Strain-associated variations in abnormal PrP trafficking of sheep scrapie. Brain Pathol 19:1–11

    Article  CAS  PubMed  Google Scholar 

  84. Jeffrey M, Scott JR, Williams A, Fraser H (1992) Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae. Acta Neuropathol 84:559–569

    Article  CAS  PubMed  Google Scholar 

  85. Jeffrey M, Wells GA (1988) Spongiform encephalopathy in a nyala (Tragelaphus angasi). Vet Pathol 25:398–399

    Article  CAS  PubMed  Google Scholar 

  86. Johnston AR, Fraser JR, Jeffrey M, Macleod N (1998) Alterations in potassium currents may trigger neurodegeneration in murine scrapie. Exp Neurol 151:326–333

    Article  CAS  PubMed  Google Scholar 

  87. Kazlauskaite J, Sanghera N, Sylvester I, Venien-Bryan C, Pinheiro TJT (2003) Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42:3295–3304

    Article  CAS  PubMed  Google Scholar 

  88. Kirkwood JK, Cunningham AA, Flach EJ, Thornton SM, Wells GAH (1995) Spongiform encephalopathy in another captive cheetah (Acinonyx jubatus)—evidence for variation in susceptibility or incubation periods between species. J Zoo Wildl Med 26:577–582

    Google Scholar 

  89. Konold T, Bone G, Vidal-Diez A et al (2008) Pruritus is a common feature in sheep infected with the BSE agent. BMC Vet Res 4:16

    Article  PubMed  CAS  Google Scholar 

  90. Kovacs GG, Budka H (2008) Prion diseases: from protein to cell pathology. Am J Pathol 172:555–565

    Article  CAS  PubMed  Google Scholar 

  91. Kovacs GG, Gelpi E, Strobel T et al (2007) Involvement of the endosomal–lysosomal system correlates with regional pathology in Creutzfeldt–Jakob disease. J Neuropathol Exp Neurol 66:628–636

    Article  CAS  PubMed  Google Scholar 

  92. Laine J, Marc ME, Sy MS, Axelrad H (2001) Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur J Neurosci 14:47–56

    Article  CAS  PubMed  Google Scholar 

  93. Lasmézas CI, Deslys JP, Robain O et al (1997) Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275:402–405

    Article  PubMed  Google Scholar 

  94. Lezmi S, Bencsik A, Monks E, Petit T, Baron T (2003) First case of feline spongiform encephalopathy in a captive cheetah born in France: PrPsc analysis in various tissues revealed unexpected targeting of kidney and adrenal gland. Histochem Cell Biol 119:415–422

    CAS  PubMed  Google Scholar 

  95. Liberski PP, Brown DR, Sikorska B, Caughey B, Brown P (2008) Cell death and autophagy in prion diseases (transmissible spongiform encephalopathies). Folia Neuropathol 46:1–25

    CAS  PubMed  Google Scholar 

  96. Liberski PP, Budka H, Yanagihara R, Gibbs CJ, Gajdusek DC (1993) Tubulovesicular structures. Light and electron microscopic neuropathology of slow virus disorders. CRC Press, Florida, pp 373–392

    Google Scholar 

  97. Liberski PP, Guiroy DC, Williams ES, Walis A, Budka H (2001) Deposition patterns of disease-associated prion protein in captive mule deer brains with chronic wasting disease. Acta Neuropathol 102:496–500

    CAS  PubMed  Google Scholar 

  98. Liberski PP, Jeffrey M, Goodsir C (1997) Tubulovesicular structures are not labeled using antibodies to prion protein (PrP) with the immunogold electron microscopy techniques. Acta Neuropathol 93:260–264

    Article  CAS  PubMed  Google Scholar 

  99. Liberski PP, Sikorska B, Guiroy D, Bessen RA (2009) Transmissible mink encephalopathy—review of the etiology of a rare prion disease. Folia Neuropathol 47:195–204

    CAS  PubMed  Google Scholar 

  100. Liberski PP, Sikorska B, Hauw JJ et al (2008) Tubulovesicular structures are a consistent (and unexplained) finding in the brains of humans with prion diseases. Virus Res 132:226–228

    Article  CAS  PubMed  Google Scholar 

  101. Liberski PP, Streichenberger N, Giraud P et al (2005) Ultrastructural pathology of prion diseases revisited: brain biopsy studies. Neuropathol Appl Neurobiol 31:88–96

    Article  CAS  PubMed  Google Scholar 

  102. Liberski PP, Yanagihara R, Gibbs CJ Jr, Gajdusek DC (1990) Appearance of tubulovesicular structures in experimental Creutzfeldt–Jakob disease and scrapie precedes the onset of clinical disease. Acta Neuropathol 79:349–354

    Article  CAS  PubMed  Google Scholar 

  103. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88:673–728

    Article  CAS  PubMed  Google Scholar 

  104. Liu T, Li RL, Pan T et al (2002) Intercellular transfer of the cellular prion protein. J Biol Chem 277:47671–47678

    Article  CAS  PubMed  Google Scholar 

  105. Lowe J, Fergusson J, Kenward N et al (1992) Immunoreactivity to ubiquitin-protein conjugates is present early in the disease process in the brains of scrapie-infected mice. Pathology 168:169–177

    Article  CAS  Google Scholar 

  106. Luhr KM, Nordstrom EK, Low P, Kristensson K (2004) Cathepsin B and L are involved in degradation of prions in GTI-1 neuronal cells. Neuroreport 15:1663–1667

    Article  CAS  PubMed  Google Scholar 

  107. Lyahyai J, Bolea R, Serrano C et al (2006) Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathol 112:451–460

    Article  CAS  PubMed  Google Scholar 

  108. Mackenzie A (1983) Immunohistochemical demonstration of glial fibrillary acidic protein in scrapie. J Comp Pathol 93:251–259

    Article  CAS  PubMed  Google Scholar 

  109. Madore N, Smith KL, Graham CH et al (1999) Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 18:6917–6926

    Article  CAS  PubMed  Google Scholar 

  110. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  CAS  PubMed  Google Scholar 

  111. Manson JC, Clarke AR, McBride PA, McConnell I, Hope J (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3:331–340

    CAS  PubMed  Google Scholar 

  112. Manuelidis L (2004) A virus behind the mask of prions? Folia Neuropathol 42(Suppl B):10–23

    PubMed  Google Scholar 

  113. Marsh RF, Hadlow WJ (1992) Transmissible mink encephalopathy. Revue Scientifique et Technique Office International des Epizooties 11:539–550

    CAS  Google Scholar 

  114. Marsh RF, Sipe JC, Morse SS, Hanson RP (1976) Transmissible mink encephalopathy: reduced spongiform degeneration in aged mink of the Chediak–Higashi genotype. Lab Invest 34:381–386

    CAS  PubMed  Google Scholar 

  115. Martin S, González L, Chong A, Houston FE, Hunter N, Jeffrey M (2005) Immunohistochemical characteristics of disease-associated PrP are not altered by host genotype or route of inoculation following infection of sheep with bovine spongiform encephalopathy. J Gen Virol 86:839–848

    Article  CAS  PubMed  Google Scholar 

  116. Martin S, Jeffrey M, González L et al (2009) Immunohistochemical and biochemical characteristics of BSE and CWD in experimentally infected European red deer (Cervus elaphus elaphus). BMC Vet Res 5:26

    Article  PubMed  CAS  Google Scholar 

  117. McBride PA, Wilson MI, Eikelenboom P, Tunstall A, Bruce ME (1998) Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. Exp Neurol 149:447–454

    Article  CAS  PubMed  Google Scholar 

  118. McGovern G, Jeffrey M (2007) Scrapie-specific pathology of sheep lymphoid tissues. PLoS ONE 2:e1304

    Article  PubMed  CAS  Google Scholar 

  119. McGovern G, Mabbott N, Jeffrey M (2009) Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice. PLoS ONE 4:e8186

    Article  PubMed  CAS  Google Scholar 

  120. Medrano AZ, Barmada SJ, Biasini E, Harris DA (2008) GFP-tagged mutant prion protein forms intra-axonal aggregates in transgenic mice. Neurobiol Dis 31:20–32

    Article  CAS  PubMed  Google Scholar 

  121. Miller MW, Williams ES (2004) Chronic wasting disease of cervids. In: Harris D (ed) Mad cow disease and related spongiform encephalopathies. Springer, Berlin, pp 193–214

    Google Scholar 

  122. Mironov A Jr, Latawiec D, Wille H et al (2003) Cytosolic prion protein in neurons. J Neurosci 23:7183–7193

    CAS  PubMed  Google Scholar 

  123. Moore SJ, Simmons M, Chaplin M, Spiropoulos J (2008) Neuroanatomical distribution of abnormal prion protein in naturally occurring atypical scrapie cases in Great Britain. Acta Neuropathol 116:547–559

    Article  CAS  PubMed  Google Scholar 

  124. Moya KL, Hassig R, Creminon C, Laffont I, DiGiamberardino L (2004) Enhanced detection and retrograde axonal transport of PrPc in peripheral nerve. J Neurochem 88:155–160

    Article  CAS  PubMed  Google Scholar 

  125. Moya KL, Sales N, Hassig R, Creminon C, Grassi J, Di Giamberardino L (2000) Immunolocalization of the cellular prion protein in normal brain. Microsc Res Tech 50:58–65

    Article  CAS  PubMed  Google Scholar 

  126. Pearson G, Wyatt J, Henderson J, Gruffydd-Jones T (1993) Feline spongiform encephalopathy: a review. Vet Annu 33:1–10

    Google Scholar 

  127. Piccardo P, Manson JC, King D, Ghetti B, Barron RM (2007) Accumulation of prion protein in the brain that is not associated with transmissible disease. Proc Natl Acad Sci USA 104:4712–4717

    Article  CAS  PubMed  Google Scholar 

  128. Prusiner SB (1991) Molecular biology and transgenetics of prions causing CNS degeneration of humans and animals. In: Bradley R et al. (eds) Sub-acute spongiform encephalopathies. EEC Brussels and Luxembourg, pp 59–82

  129. Prusiner SB, Kaneko K, Serban H, Cohen FE, Safar J, Riesner D (1999) Some strategies and methods for the study of prions. In: Prusiner SB (ed) Prion biology and diseases. Cold Spring Harbor Laboratory Press, New York, pp 653–715

    Google Scholar 

  130. Race R, Raines A, Raymond GJ, Caughey B, Chesebro B (2001) Long-term subclinical carrier state precedes scrapie replication and adaptation in a resistent species: analogies to bovine spongiform encephalopathy and variant Creutzfeldt–Jakob disease in humans. J Virol 75:10106–10112

    Article  CAS  PubMed  Google Scholar 

  131. Raeber AJ, Race RE, Brandner S et al (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16:6057–6065

    Article  CAS  PubMed  Google Scholar 

  132. Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130

    Article  CAS  PubMed  Google Scholar 

  133. Rodolfo K, Hassig R, Moya KL, Frobert Y, Grassi J, Di Giamberardino L (1999) A novel cellular prion protein isoform present in rapid anterograde axonal transport. Neuroreport 10:3639–3644

    Article  CAS  PubMed  Google Scholar 

  134. Rodríguez A, Martin M, Albasanz JL et al (2006) Group I mGluR signaling in BSE-infected bovine-PrP transgenic mice. Neurosci Lett 410:115–120

    Article  PubMed  CAS  Google Scholar 

  135. Sales N, Hassig R, Rodolfo K et al (2002) Developmental expression of the cellular prion protein in elongating axons. Eur J Neurosci 15:1163–1177

    Article  PubMed  Google Scholar 

  136. Serrano C, Lyahyai J, Bolea R et al (2009) Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions. Vet Res 40:42

    Article  PubMed  CAS  Google Scholar 

  137. Shyng SL, Moulder KL, Lesko A, Harris DA (1995) The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J Biol Chem 270:14793–14800

    Article  CAS  PubMed  Google Scholar 

  138. Siskova Z, Page A, O’Connor V, Perry VH (2009) Degenerating synaptic boutons in prion disease. Am J Pathol 175:1610–1621

    Article  CAS  PubMed  Google Scholar 

  139. Sisó S, Doherr MG, Botteron C et al (2007) Neuropathological and molecular comparison between clinical and asymptomatic bovine spongiform encephalopathy cases. Acta Neuropathol 114:501–508

    Article  PubMed  Google Scholar 

  140. Sisó S, Ordóňez M, Cordón I, Vidal E, Pumarola M (2004) Distribution of PrPres in the brains of BSE-affected cows detected by active surveillance in Catalonia, Spain. Vet Rec 155:524–525

    Article  PubMed  Google Scholar 

  141. Sisó S, Puig B, Varea R et al (2002) Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol 103:615–626

    Article  PubMed  CAS  Google Scholar 

  142. Snow AD, Wight TN, Nochlin D et al (1990) Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann–Straussler syndrome, Creutzfeldt–Jakob disease and scrapie. Lab Invest 63:601–611

    CAS  PubMed  Google Scholar 

  143. Spiropoulos J, Casalone C, Caramelli M, Simmons MM (2007) Immunohistochemistry for PrPSc in natural scrapie reveals patterns which are associated with the PrP genotype. Neuropathol Appl Neurobiol 33:398–409

    Article  CAS  PubMed  Google Scholar 

  144. Spraker TR, Zink RR, Cummings BA, Wild MA, Miller MW, O’Rourke KI (2002) Comparison of histological lesions and immunohistochemical staining of proteinase-resistant prion protein in a naturally occurring spongiform encephalopathy of free-ranging mule deer (Odocoileus hemionus) with those of chronic wasting disease of captive mule deer. Vet Pathol 39:110–119

    Article  CAS  PubMed  Google Scholar 

  145. Stack M, Jeffrey M, Gubbins S et al (2006) Monitoring for bovine spongiform encephalopathy in sheep in Great Britain, 1998–2004. J Gen Virol 87:2099–2107

    Article  CAS  PubMed  Google Scholar 

  146. Stack MJ, Chaplin MJ, Clark J (2002) Differentiation of prion protein glycoforms from naturally occurring sheep scrapie, sheep-passaged scrapie strains (CH1641 and SSBP1), bovine spongiform encephalopathy (BSE) cases and Romney and Cheviot breed sheep experimentally inoculated with BSE using two monoclonal antibodies. Acta Neuropathol 104:279–286

    CAS  PubMed  Google Scholar 

  147. Stahl N, Baldwin MA, Burlingame AL, Prusiner SB (1990) Identification of glycoinositol phospholipid linked and truncated forms of the scrapie prion protein. Biochem 29:8879–8884

    Article  CAS  Google Scholar 

  148. Steele AD, King OD, Jackson WS et al (2007) Diminishing apoptosis by deletion of Bax or overexpression of Bcl-2 does not protect against infectious prion toxicity in vivo. J Neurosci 27:13022–13027

    Article  CAS  PubMed  Google Scholar 

  149. Theil D, Fatzer R, Meyer R, Schobesberger M, Zurbriggen A, Vandevelde M (1999) Nuclear DNA fragmentation and immune reactivity in bovine spongiform encephalopathy. J Comp Pathol 121:357–367

    Article  CAS  PubMed  Google Scholar 

  150. Van Keulen LJM, Schreuder BEC, Meloen RH et al (1995) Immunohistochemical detection and localization of prion protein in brain tissue of sheep with natural scrapie. Vet Pathol 32:299–308

    Article  PubMed  Google Scholar 

  151. Veith NM, Plattner H, Stuermer CA, Schulz-Schaeffer WJ, Burkle A (2009) Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J Cell Biol 88:45–63

    Article  CAS  PubMed  Google Scholar 

  152. Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37:323–332

    Article  CAS  PubMed  Google Scholar 

  153. Walmsley AR, Zeng F, Hooper NM (2003) The N-terminal region of the prion protein ectodomain contains a lipid raft targeting determinant. J Biol Chem 278:37241–37248

    Article  CAS  PubMed  Google Scholar 

  154. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266

    Article  CAS  PubMed  Google Scholar 

  155. Wells GAH, Wilesmith JW, McGill IS (1991) Bovine spogiform encephalopathy: a neuropathological perspective. Brain Pathol 1:69–78

    Article  CAS  PubMed  Google Scholar 

  156. White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jeffrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffrey, M., McGovern, G., Sisó, S. et al. Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 121, 113–134 (2011). https://doi.org/10.1007/s00401-010-0700-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0700-3

Keywords

Navigation