Skip to main content

Advertisement

Log in

Allosteric Modulator Desformylflustrabromine Relieves the Inhibition of α2β2 and α4β2 Nicotinic Acetylcholine Receptors by β-Amyloid1–42 Peptide

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChRs) are pentameric transmembrane proteins that belong to the cys-loop ligand-gated ion channel family. These receptors are widely expressed in the brain and implicated in the pathophysiology of many neurological conditions, including Alzheimer’s disease (AD), where typical symptoms include the loss of cognitive function and dementia. The presence of extracellular neuritic plaques composed of β amyloid (Aβ1–42) peptide is a characteristic feature of AD. Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) for α4β2 nAChRs since it increases peak ACh responses without inducing a response on its own. Previously, the effect of dFBr on the α2β2 nAChR subtype was not known. The action of dFBr was tested on α2β2 receptors expressed in Xenopus oocytes. It was found that dFBr is also a PAM for the α2β2 receptor. Next we tested whether dFBr had any effect on the previously known block of both the α4β2 and α2β2 receptors by Aβ1–42. We found that the functional blockade of ACh-induced currents in oocytes expressing α4β2 and α2β2 receptors by Aβ1–42 was prevented by dFBr. We conclude that dFBr is a positive allosteric modulator for both α4β2 and α2β2 subtypes of nAChRs and that it also relieves the blockade of these receptors by Aβ1–42. This study demonstrates that PAMs for the non-α7 nAChRs have the potential to develop into clinically applicable drugs for AD and other disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E (2001) Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry 49(3):175–184

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Dineley KT, Bell KA, Bui D, Sweatt JD (2002) beta-Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Biol Chem 277(28):25056–25061

    Article  PubMed  CAS  Google Scholar 

  • Dougherty JJ, Wu J, Nichols RA (2003) beta-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci 23(17):6740–6747

    PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41(1):31–37

    PubMed  CAS  Google Scholar 

  • Fu W, Jhamandas JH (2003) beta-Amyloid peptide activates non-alpha7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J Neurophysiol 90(5):3130–3136

    Article  PubMed  CAS  Google Scholar 

  • Gay EA, Yakel JL (2007) Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol 584(Pt 3):727–733

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan M, Monteggia LM, Anderson DJ et al (1996) Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine alpha 4 beta 2 receptor. J Pharmacol Exp Ther 276(1):289–297

    PubMed  CAS  Google Scholar 

  • Grassi F, Palma E, Tonini R, Amici M, Ballivet M, Eusebi F (2003) Amyloid beta(1–42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. J Physiol 547(Pt 1):147–157

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW (2001) Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci USA 98(15):8838–8843

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22(12):555–561

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Padnya A, Weltzin M, Edmonds BW, Schulte MK, Glennon RA (2007) Synthesis of desformylflustrabromine and its evaluation as an alpha4beta2 and alpha7 nACh receptor modulator. Bioorg Med Chem Lett 17(17):4855–4860

    Article  PubMed  CAS  Google Scholar 

  • Lamb PW, Melton MA, Yakel JL (2005) Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by beta-amyloid1–42 peptide. J Mol Neurosci 27(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138(3–4):217–230

    Article  CAS  Google Scholar 

  • Lindstrom J (1996) Neuronal nicotinic acetylcholine receptors. Ion Channels 4:377–450

    PubMed  CAS  Google Scholar 

  • Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G (1996) Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res 109:125–137

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kawai H, Berg DK (2001) beta-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA 98(8):4734–4739

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Huang Y, Xue F et al (2009) A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 29(4):918–929

    Article  PubMed  CAS  Google Scholar 

  • Lysek N, Rachor E, Lindel T (2002) Isolation and structure elucidation of deformylflustrabromine from the North Sea bryozoan Flustra foliacea. Z Naturforsch C 57(11–12):1056–1061

    PubMed  CAS  Google Scholar 

  • McQuiston AR, Madison DV (1999) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19(8):2887–2896

    PubMed  CAS  Google Scholar 

  • Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE (1994) Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264(5160):850–852

    Article  PubMed  CAS  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61(1):75–111

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Smith CJ et al (1986) Cholinergic receptors in cognitive disorders. Can J Neurol Sci 13(4 Suppl):521–527

    PubMed  CAS  Google Scholar 

  • Peters L, Wright AD, Kehraus S, Gundisch D, Tilotta MC, Konig GM (2004) Prenylated indole alkaloids from Flustra foliacea with subtype specific binding on NAChRs. Planta Med 70(10):883–886

    Article  PubMed  CAS  Google Scholar 

  • Pettit DL, Shao Z, Yakel JL (2001) beta-Amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 21(1):RC120

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67

    Article  PubMed  CAS  Google Scholar 

  • Sala F, Mulet J, Reddy KP et al (2005) Potentiation of human alpha4beta2 neuronal nicotinic receptors by a Flustra foliacea metabolite. Neurosci Lett 373(2):144–149

    Article  PubMed  CAS  Google Scholar 

  • Schmechel DE, Saunders AM, Strittmatter WJ et al (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 90(20):9649–9653

    Article  PubMed  CAS  Google Scholar 

  • Sudweeks SN, Yakel JL (2000) Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J Physiol 527 Pt:3515–3552

    Google Scholar 

  • Weltzin MM, Schulte MK (2010) Pharmacological characterization of the allosteric modulator desformylflustrabromine and its interaction with alpha4beta2 neuronal nicotinic acetylcholine receptor orthosteric ligands. J Pharmacol Exp Ther 334(3):917–926

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Schoepfer R, Swanson LW, Simmons DM, Lindstrom JM (1987) Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors. Nature 327(6122):515–518

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Kuo YP, George AA, Xu L, Hu J, Lukas RJ (2004) beta-Amyloid directly inhibits human alpha4beta2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J Biol Chem 279(36):37842–37851

    Article  PubMed  CAS  Google Scholar 

  • Yakel JL, Shao Z (2004) Functional and molecular characterization of neuronal nicotinic ACh receptors in rat hippocampal interneurons. Prog Brain Res 145:95–107

    Article  PubMed  CAS  Google Scholar 

  • Young GT, Zwart R, Walker AS, Sher E, Millar NS (2008) Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA 105(38):14686–14691

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Patricia Lamb for the synthesis of mRNA and other molecular biology work. We extend our appreciation to C. Erxleben and R. Saha for advice in preparing the manuscript. This research was supported by the Intramural Research Program of National Institute of Environmental Health Sciences, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrel L. Yakel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandya, A., Yakel, J.L. Allosteric Modulator Desformylflustrabromine Relieves the Inhibition of α2β2 and α4β2 Nicotinic Acetylcholine Receptors by β-Amyloid1–42 Peptide. J Mol Neurosci 45, 42–47 (2011). https://doi.org/10.1007/s12031-011-9509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9509-3

Keywords

Navigation