Skip to main content

The α7 nAChR Selective Agonists as Drug Candidates for Alzheimer’s Disease

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

The nicotinic acetylcholine receptors (nAChRs) are ion channels distribute in the central or peripheral nervous system. They are receptors of the neurotransmitter acetylcholine and activation of them by agonists mediates synaptic transmission in the neuron and muscle contraction in the neuromuscular junction. Current studies reveal relationship between the nAChRs and the learning and memory as well as cognation deficit in various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, schizophrenia and drug addiction. There are various subtypes in the nAChR family and the α7 nAChR is one of the most abundant subtypes in the brain. The α7 nAChR is significantly reduced in the patients of Alzheimer’s disease and is believed to interact with the Aβ amyloid. Aβ amyloid is co-localized with α7 nAChR in the senile plaque and interaction between them induces neuron apoptosis and reduction of the α7 nAChR expression. Treatment with α7 agonist in vivo shows its neuron protective and procognation properties and significantly improves the learning and memory ability of the animal models. Therefore, the α7 nAChR agonists are excellent drug candidates for Alzheimer’s disease and we summarized here the current agonists that have selectivity of the α7 nAChR over the other nAChR, introduced recent molecular modeling works trying to explain the molecular mechanism of their selectivity and described the design of novel allosteric modulators in our lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, Volsen SG, Bose S, Evans N, Lindstrom J (2003) Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat 25(2):97–113

    Article  CAS  PubMed  Google Scholar 

  2. Lloyd GK, Williams M (2000) Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 292(2):461

    CAS  PubMed  Google Scholar 

  3. Nashmi R, Dickinson ME, McKinney S, Jareb M, Labarca C, Fraser SE, Lester HA (2003) Assembly of α4β2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci 23(37):11554–11567

    CAS  PubMed  Google Scholar 

  4. Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  5. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wevers A, Monteggia L, Nowacki S, Bloch W, Schütz U, Lindstrom J, Pereira EFR, Eisenberg H, Giacobini E, De Vos RAI (1999) Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci 11(7):2551–2565

    Article  CAS  PubMed  Google Scholar 

  7. Guan ZZ, Zhang X, Ravid R, Nordberg A (2000) Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease. J Neurochem 74(1):237–243

    Article  CAS  PubMed  Google Scholar 

  8. Wevers A, Witter B, Moser N, Burghaus L, Banerjee C, Steinlein OK, Schütz U, De Vos RAI, Jansen Steur ENH, Lindstrom J (2000) Classical Alzheimer features and cholinergic dysfunction: towards a unifying hypothesis? Acta Neurol Scand 102:42–48

    Article  Google Scholar 

  9. Luheshi LM, Tartaglia GG, Brorsson AC, Pawar AP, Watson IE, Chiti F, Vendruscolo M, Lomas DA, Dobson CM, Crowther DC (2007) Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity. PLoS Biol 5(11):e290

    Article  PubMed Central  PubMed  Google Scholar 

  10. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Oneill MJ, Murray TK, Lakics V, Visanji NP, Duty S (2002) The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord 1 (4):399–411

    Google Scholar 

  12. Grassi F, Palma E, Tonini R, Amici M, Ballivet M, Eusebi F (2003) Amyloid β1-42 peptide alters the gating of human and mouse α-bungarotoxin-sensitive nicotinic receptors. J Physiol 547(1):147–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dineley KT, Bell KA, Bui D, Sweatt JD (2002) β-Amyloid peptide activates α7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Biol Chem 277(28):25056–25061

    Article  CAS  PubMed  Google Scholar 

  14. Dougherty JJ, Wu J, Nichols RA (2003) β-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci 23(17):6740–6747

    CAS  PubMed  Google Scholar 

  15. Wang HY, Li W, Benedetti NJ, Lee DHS (2003) α7 nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278(34):31547

    Article  CAS  PubMed  Google Scholar 

  16. Freir DB, Herron CE (2003) Nicotine enhances the depressive actions of Aβ1-40 on long-term potentiation in the rat hippocampal CA1 region in vivo. J Neurophysiol 89(6):2917–2922

    Article  CAS  PubMed  Google Scholar 

  17. Wildman SS, Marks J, Churchill LJ, Peppiatt CM, Horisberger JD, King BF, Unwin RJ (2005) Molecular interactions between cloned epithelial sodium channels and ATP-gated P2X receptors. FASEB J 19(5):A1177

    Google Scholar 

  18. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423(6943):949–955

    Article  CAS  PubMed  Google Scholar 

  19. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3(2):102–114

    Article  CAS  PubMed  Google Scholar 

  20. Arias HR (2009) Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 41(11):2098–2108

    Article  CAS  PubMed  Google Scholar 

  21. Arias HR (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 36(7):595–645

    Article  CAS  PubMed  Google Scholar 

  22. Arias HR (2010) Molecular interaction of bupropion with nicotinic acetylcholine receptors. J Pediatr Biochem 1(2):185–197

    Google Scholar 

  23. Gu RX, Zhong YQ, Wei DQ (2011) Structural basis of agonist selectivity for different nAChR subtypes: insights from crystal structures, mutation experiments and molecular simulations. Curr Pharm Des 17(17):1652–1662

    Article  CAS  PubMed  Google Scholar 

  24. Tondera JE, Olesen PH, Hansen JB, Begtrup M, Pettersson I (2001) An improved nicotinic pharmacophore and a stereoselective CoMFA-model for nicotinic agonists acting at the central nicotinic acetylcholine receptors labelled by [3H]-N-methylcarbamylcholine. J Comput Aided Mol Des 15(3):247–258

    Article  Google Scholar 

  25. Haydar SN, Ghiron C, Bettinetti L, Bothmann H, Comery TA, Dunlop J, La Rosa S, Micco I, Pollastrini M, Quinn J (2009) SAR and biological evaluation of SEN12333/WAY-317538: novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg Med Chem 17(14):5247–5258

    Article  CAS  PubMed  Google Scholar 

  26. Ghiron C, Haydar SN, Aschmies S, Bothmann H, Castaldo C, Cocconcelli G, Comery TA, Di L, Dunlop J, Lock T (2010) Novel alpha-7 nicotinic acetylcholine receptor agonists containing a urea moiety: identification and characterization of the potent, selective, and orally efficacious agonist 1-[6-(4-Fluorophenyl) pyridin-3-yl]-3-(4-piperidin-1-ylbutyl) urea (SEN34625/WYE-103914). J Med Chem 53(11):4379–4389

    Google Scholar 

  27. Mullen G, Napier J, Balestra M, DeCory T, Hale G, Macor J, Mack R, Loch Iii J, Wu E, Kover A (2000) (-)-Spiro [1-azabicyclo [2.2. 2] octane-3, 5’-oxazolidin-2’-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the α7 nicotinic acetylcholine receptor. J Med Chem 43(22):4045–4050

    Google Scholar 

  28. Kampen M, Selbach K, Schneider R, Schiegel E, Boess F, Schreiber R (2004) AR-R 17779 improves social recognition in rats by activation of nicotinic a 7 receptors. Psychopharmacology 172(4):375–383

    Article  PubMed  Google Scholar 

  29. Boess FG, De Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methfessel C, Riedl B, Schnizler K, van der Staay FJ (2007) The novel α7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo [2.2. 2] oct-3-yl]-7-[2-(methoxy) phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 321(2):716

    Article  CAS  PubMed  Google Scholar 

  30. Malysz J, Anderson DJ, Gr Nlien JH, Ji J, Bunnelle WH, H Kerud M, Thorin-Hagene K, Ween H, Helfrich R, Hu M (2010) In vitro pharmacological characterization of a novel selective α7 neuronal nicotinic acetylcholine receptor agonist ABT-107. J Pharmacol Exp Ther 334(3):863

    Google Scholar 

  31. Othman AA, Lenz RA, Zhang J, Li J, Awni WM, Dutta S (2011) Single-and multiple-dose pharmacokinetics, safety, and tolerability of the selective α7 neuronal nicotinic receptor agonist, ABT-107, in healthy human volunteers. J Clin Pharmacol 51(4):512

    Google Scholar 

  32. Roncarati R, Scali C, Comery TA, Grauer SM, Aschmi S, Bothmann H, Jow B, Kowal D, Gianfriddo M, Kelley C (2009) Procognitive and neuroprotective activity of a novel α7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther 329(2):459

    Article  CAS  PubMed  Google Scholar 

  33. Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM (2009) TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 78(7):803–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. O’Donnell CJ, Peng L, O’Neill BT, Arnold EP, Mather RJ, Sands SB, Shrikhande A, Lebel LA, Spracklin DK, Nedza FM (2009) Synthesis and SAR studies of 1, 4-diazabicyclo [3.2. 2] nonane phenyl carbamates-subtype selective, high affinity [alpha] 7 nicotinic acetylcholine receptor agonists. Bioorg Med Chem Lett 19(16):4747–4751

    Article  PubMed  Google Scholar 

  35. Bodnar AL, Cortes-Burgos LA, Cook KK, Dinh DM, Groppi VE, Hajos M, Higdon NR, Hoffmann WE, Hurst RS, Myers JK (2005) Discovery and structure-activity relationship of quinuclidine benzamides as agonists of α7 nicotinic acetylcholine receptors. J Med Chem 48(4):905–908

    Article  CAS  PubMed  Google Scholar 

  36. Hajos M, Hurst RS, Hoffmann WE, Krause M, Wall TM, Higdon NR, Groppi VE (2005) The selective α7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-azabicyclo [2.2. 2] oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. J Pharmacol Exp Ther 312(3):1213

    Article  CAS  PubMed  Google Scholar 

  37. Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh BA (2008) Discovery of N-[(3R, 5R)-1-azabicyclo [3.2. 1] oct-3-yl] furo [2, 3-c] pyridine-5-carboxamide as an agonist of the [alpha] 7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 18(12):3611–3615

    Article  CAS  PubMed  Google Scholar 

  38. Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliott RL, Gopalakrishnan M (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57(1–2):231–241

    Article  CAS  PubMed  Google Scholar 

  39. Feuerbach D, Nozulak J, Lingenhoehl K, McAllister K, Hoyer D (2007) JN403, in vitro characterization of a novel nicotinic acetylcholine receptor [alpha] 7 selective agonist. Neurosci Lett 416(1):61–65

    Article  CAS  PubMed  Google Scholar 

  40. Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F, Nozulak J, Enz A, Bilbe G, McAllister K (2009) The selective nicotinic acetylcholine receptor [alpha] 7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 56(1):254–263

    Article  CAS  PubMed  Google Scholar 

  41. Sydserff S, Sutton EJ, Song D, Quirk MC, Maciag C, Li C, Jonak G, Gurley D, Gordon JC, Christian EP (2009) Selective [alpha] 7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 78(7):880–888

    Article  CAS  PubMed  Google Scholar 

  42. Castner SA, Hudzik T, Maier DL, Mrzljak L, Piser T, Smith JS, Widzowski D, Williams GV (2009) A composition comprising (R)-spiro [L-Azabicyclo [2.2. 2] Octane-3, 2’(3’H)-Furo [2, 3-B] Pyridine (AZD0328) and its use in the treatment of Alzheimer’s disease, ADHD or cognitive dysfunction. EP patent 2,120,937

    Google Scholar 

  43. Haydar SN, Dunlop J (2010) Neuronal nicotinic acetylcholine receptors-targets for the development of drugs to treat cognitive impairment associated with schizophrenia and Alzheimer’s disease. Curr Top Med Chem 10(2):144–152

    Google Scholar 

  44. Lopez-Hernandez G, Placzek AN, Thinschmidt JS, Lestage P, Trocme-Thibierge C, Morain P, Papke RL (2007) Partial agonist and neuromodulatory activity of S 24795 for alpha7 nAChR responses of hippocampal interneurons. Neuropharmacology 53(1):134–144

    Article  CAS  PubMed  Google Scholar 

  45. Wang HY, Bakshi K, Shen C, Frankfurt M, Trocmé-Thibierge C, Morain P (2010) S 24795 limits [beta]-Amyloid-[alpha] 7 nicotinic receptor interaction and reduces Alzheimer’s disease-like pathologies. Biol Psychiatry 67(6):522–530

    Google Scholar 

  46. Anderson DJ, Bunnelle W, Surber B, Du J, Surowy C, Tribollet E, Marguerat A, Bertrand D, Gopalakrishnan M (2008) [3H]A-585539[(1S,4S)-2, 2-Dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo [2.2. 1] heptane], a novel high-affinity α7 neuronal nicotinic receptor agonist: radioligand binding characterization to rat and human brain. J Pharmacol Exp Ther 324(1):179

    Article  CAS  PubMed  Google Scholar 

  47. Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E (2007) Broad-spectrum efficacy across cognitive domains by α7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 27(39):10578

    Article  CAS  PubMed  Google Scholar 

  48. Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J (2006) SSR180711, a novel selective α7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32(1):17–34

    Article  PubMed  Google Scholar 

  49. Sabbagh MN (2009) Drug development for Alzheimer’s disease: where are we now and where are we headed? Am J Geriatr Pharmacother 7(3):167–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fan, H., Gu, R., Wei, D. (2015). The α7 nAChR Selective Agonists as Drug Candidates for Alzheimer’s Disease. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_21

Download citation

Publish with us

Policies and ethics