Skip to main content
Log in

Scaffolds for Skeletal Regeneration

  • Published:
NanoBiotechnology

Abstract

Although current treatment modalities for bone defects include autograft, allograft, and artificial bone substitutes, they have problems concerning invasiveness, safety, and performance, respectively, calling for development of innovative artificial bones with better handling and mechanical strength, better control of external and internal structures, and better biodegradability and osteo-inductive ability. We propose to fabricate novel high-performance artificial bones using 3D inkjet printer based on the image data of bone defect/deformity. Shape precisely fitting to the defect/deformity, internal structure facilitating cell invasion, and good biodegradability are achieved. Bioactive substances can be incorporated by printing in combination with drug delivery system to induce bone regeneration at the desired locations. These osteo-inductive artificial bones will help efficiently treat various types of bone defect/deformity in a less invasive and safe manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salgado AJ, Gomes ME, Coutinho OP, Reis RL. In: Reis RL, Roman JS, editors. Biodegradable systems in tissue engineering and regenerative medicine. Boca Raton: CRC; 2005. p. 457–78.

    Google Scholar 

  2. Meijer GJ, deBuijn JD, Koole R, van Blitterswijk CA. PLoS Medicine. 2007;4:260–4.

    Article  Google Scholar 

  3. Ohgushi H, Miyake J, Tateishi T. Novartis Found Symp. 2003;249:118–27.

    Article  Google Scholar 

  4. Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG, Wang CY. Nat Biotechnol 2002;20:587–91.

    Article  CAS  Google Scholar 

  5. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Nat Biotechnol. 2004;22:560–7.

    Article  CAS  Google Scholar 

  6. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM. Tissue Eng. 2001;7:89–99.

    Article  CAS  Google Scholar 

  7. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Exp Hematol. 2002;30:896–904.

    Article  CAS  Google Scholar 

  8. zur Nieden NI, Kempka G, Ahr HJ. Differentiation. 2003;71:18–27.

    Article  CAS  Google Scholar 

  9. Bruder SP, Caplan AI. In: Lanza Langer RPR, Vacanti J, editors. Principles of tissue engineering. San Diego: Academic; 2000. p. 683–96.

    Chapter  Google Scholar 

  10. Mussano F, Ciccone G, Ceccarelli M, Baldi I, Bassi F. Spine. 2007;32:824–30.

    Article  Google Scholar 

  11. Hollister SJ. Nat Mater 2005;4:518–24.

    Article  CAS  Google Scholar 

  12. Hutmacher DW, Sittinger M, Risbud MV. Trends Biotechnol. 2004;22:354–62.

    Article  CAS  Google Scholar 

  13. Igawa K, Mochizuki M, Sugimori O, Shimizu K, Yamazawa KH, Nakamura K, Takato T, Nishimura R, Suzuki S, Anzai M, Chung U, Sasaki N. J Artif Organs. 2006;9:234–340.

    Article  CAS  Google Scholar 

  14. Kanayama N, Fukushima S, Nishiyama N, Itaka K, Jang W-D, Miyata K, Yamasaki Y, Chung U, Kataoka K. Chem Med Chem. 2006;1:439–4.

    CAS  Google Scholar 

  15. Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T, Chung UI, Kataoka K. Mol Ther. 2007;15:1655–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ung-il Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, Ui., Itaka, K., Nishiyama, N. et al. Scaffolds for Skeletal Regeneration. Nanobiotechnol 3, 104–106 (2007). https://doi.org/10.1007/s12030-008-9004-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9004-2

Keywords

Navigation