Skip to main content
Log in

Modeling the Pattern of Contrast Extravasation in Acute Intracerebral Hemorrhage Using Dynamic Contrast-Enhanced MR

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Contrast extravasation (CE) in spontaneous intracerebral hemorrhage (ICH), coined the spot sign, predicts hematoma expansion (HE) and poor clinical outcome. The dynamic relationship between CE and the mode of ICH growth are poorly understood. We characterized the in vivo pattern and rate of HE using a novel animal model of acute ICH.

Methods

Basal ganglia ICH was created in 14 Yorkshire swine utilizing a novel MRI integrated model, permitting real-time CE observation using dynamic contrast-enhanced (DCE) MRI. Computerized planimetry measured CE volume at each time point. Spatial vector analysis along three orthogonal axes determined distance vectors. Maximizing and minimizing the coefficient of determination defined the temporal phases of growth and stability, respectively. CE rate was calculated using a Patlak model.

Results

Asymmetric growth and variable rates of expansion characterized HE defining three distinct growth phases and patterns. A primary growth phase (duration 160 s; IQR 50–130) demonstrated rapid linear growth (0.04 mm/s IQR 0.01–0.10) accounting for 85 ± 15 % of total HE. The stationary phase demonstrated stability (duration 145 s; IQR 0–655). A secondary growth phase (duration 300; 130–600 s) accounted for 23 ± 8 % of total HE. In the primary and secondary growth phase, asymmetric growth occurred in the anterior–posterior (AP) planes (0.056 mm/s; p = 0.026 and 0.0112 mm/s; p = 0.03). Monophasic 2 (14 %), biphasic 4 (35 %) (primary followed by secondary growth), and triphasic 8 (56 %) patterns (primary, stationary, and secondary growth phase) were observed.

Conclusions

A novel model of ICH provides real-time study of the dynamics and rate of CE. This data facilitates the understanding of pattern and rate of ICH formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morgenstern LB, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41(9):2108–29.

    Article  PubMed  Google Scholar 

  2. Dowlatshahi D, et al. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology. 2011;76(14):1238–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bermejo PG, et al. Spot sign and live-imaged dramatic intracerebral hematoma expansion. Neurology. 2010;75(9):834.

    Article  PubMed  Google Scholar 

  4. Jeong D, Jhaveri MD, Prabhakaran S. Magnetic resonance imaging characteristics at onset of spontaneous intracerebral hemorrhage. Arch Neurol. 2011;68(6):826–7.

    PubMed  Google Scholar 

  5. Rizos T, et al. Ongoing intracerebral bleeding despite hemostatic treatment associated with a spot sign in a patient on oral anticoagulation therapy. Cerebrovasc Dis. 2009;28(6):623–4.

    Article  CAS  PubMed  Google Scholar 

  6. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30(3):536–50.

    Article  CAS  PubMed  Google Scholar 

  7. Greenberg CH, et al. Modeling intracerebral hemorrhage growth and response to anticoagulation. PLoS One. 2012;7(10):e48458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mayer SA. Ultra-early hemostatic therapy for intracerebral hemorrhage. Stroke. 2003;34(1):224–9.

    Article  PubMed  Google Scholar 

  9. Wada R, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38(4):1257–62.

    Article  PubMed  Google Scholar 

  10. Demchuk AM, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11(4):307–14.

    Article  PubMed  Google Scholar 

  11. d’Esterre CD, et al. Early rate of contrast extravasation in patients with intracerebral hemorrhage. AJNR Am J Neuroradiol. 2011;32(10):1879–84.

    Article  PubMed  Google Scholar 

  12. Dowlatshahi D, et al. Ongoing bleeding in acute intracerebral haemorrhage. Lancet. 2013;381(9861):152.

    Article  PubMed  Google Scholar 

  13. Koculym A, et al. CT perfusion spot sign improves sensitivity for prediction of outcome compared with CTA and postcontrast CT. AJNR Am J Neuroradiol. 2013;34(5):965–70 (S1).

    Article  CAS  PubMed  Google Scholar 

  14. Aviv RI, et al. An in vivo, MRI-integrated real-time model of active contrast extravasation in acute intracerebral hemorrhage. AJNR Am J Neuroradiol. 2014;35(9):1693–9. doi:10.3174/ajnr.A3939.

  15. Roberts HC, et al. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol. 2001;8(5):384–91.

    Article  CAS  PubMed  Google Scholar 

  16. Chakraborty S, et al. Dynamic nature of the CT angiographic “spot sign”. Br J Radiol. 2010;83(994):e216–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Boulouis G, et al. Anatomic pattern of intracerebral hemorrhage expansion: relation to CT angiography spot sign and hematoma center. Stroke. 2014;45(4):1154–6.

    Article  PubMed  Google Scholar 

  18. Edlow BL, et al. The pattern and pace of hyperacute hemorrhage expansion. Neurocrit Care. 2012;17(2):250–4.

    Article  PubMed Central  PubMed  Google Scholar 

  19. San Millan Ruiz D, et al. The perianeurysmal environment: influence on saccular aneurysm shape and rupture. AJNR Am J Neuroradiol. 2006;27(3):504–12.

    CAS  PubMed  Google Scholar 

  20. Biffi A, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011;10(8):702–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brouwers HB, et al. Apolipoprotein E genotype is associated with CT angiography spot sign in lobar intracerebral hemorrhage. Stroke. 2012;43(8):2120–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mayer SA, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Aviv was supported by the Heart and stroke foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Aviv.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 34726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Huynh, T.J., Huang, Y. et al. Modeling the Pattern of Contrast Extravasation in Acute Intracerebral Hemorrhage Using Dynamic Contrast-Enhanced MR. Neurocrit Care 22, 320–324 (2015). https://doi.org/10.1007/s12028-014-0071-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0071-z

Keywords

Navigation