Skip to main content
Log in

All-trans retinoic acid up-regulates the human CD2AP gene expression through Sp1/Sp3 binding sites

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

All-trans retinoic acid (ATRA), an active metabolite of vitamin A, plays an important role in regulating cell differentiation, proliferation, and apoptosis. It was reported that ATRA could cause an up-regulation of protein expression of CD2AP in nephrotic animals. However, the mechanism of ATRA-mediated up-regulation is not well understood. In the present study, deletion analysis and luciferase assays demonstrated that ATRA caused a marked increase in the activity of the CD2AP promoter, and the region between nt −599 and −328 from the transcription start site, where there are two clusters of Sp1/3 binding sites, was indispensable for ATRA-mediated up-regulation. Chromatin immunoprecipitation assays revealed that ATRA activated the CD2AP transcription through enhancing the DNA-binding activity of Sp1 and Sp3 with the CD2AP promoter. Taken together, this study provided evidence for the first time showing the stimulating effect of ATRA on CD2AP and new therapeutic strategies for the treatment of nephritic syndrome and other associated diseases of CD2AP deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, Desai N, et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell. 1998;94(5):667–77.

    Article  CAS  PubMed  Google Scholar 

  2. Dikic I. CIN85/CMS family of adaptor molecules. FEBS Lett. 2002;529(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  3. Cormont M, Meton I, Mari M, Monzo P, Keslair F, Gaskin C, et al. CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic. 2003;4(2):97–112.

    Article  CAS  PubMed  Google Scholar 

  4. Huber TB, Hartleben B, Kim J, Schmidts M, Schermer B, Keil A, et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol. 2003;23(14):4917–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kobayashi S, Sawano A, Nojima Y, Shibuya M, Maru Y. The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J. 2004;18(7):929–31. doi:10.1096/fj.03-0767fje.

    CAS  PubMed  Google Scholar 

  6. Schiffer M, Mundel P, Shaw AS, Bottinger EP. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem. 2004;279(35):37004–12. doi:10.1074/jbc.M403534200.

    Article  CAS  PubMed  Google Scholar 

  7. Shih NY, Li J, Cotran R, Mundel P, Miner JH, Shaw AS. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am J Pathol. 2001;159(6):2303–8. doi:10.1016/s0002-9440(10)63080-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science (New York, NY). 1999;286(5438):312–5.

    Article  CAS  Google Scholar 

  9. Carter C. Alzheimer’s disease: APP, gamma secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and their relationships with herpes simplex, C. pneumoniae, other suspect pathogens, and the immune system. Int J Alzheimer’s Dis. 2011;2011:501862. doi:10.4061/2011/501862.

    Google Scholar 

  10. Chung SJ, Kim MJ, Kim YJ, Kim J, You S, Jang EH, et al. CR1, ABCA7, and APOE genes affect the features of cognitive impairment in Alzheimer’s disease. J Neurol Sci. 2014;339(1–2):91–6. doi:10.1016/j.jns.2014.01.029.

    Article  CAS  PubMed  Google Scholar 

  11. Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, Hu Y, Devenport D, et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet. 2014;23(4):870–7. doi:10.1093/hmg/ddt478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tossidou I, Starker G, Kruger J, Meier M, Leitges M, Haller H, et al. PKC-alpha modulates TGF-beta signaling and impairs podocyte survival. Cell Physiol Biochem. 2009;24(5–6):627–34. doi:10.1159/000257518.

    Article  CAS  PubMed  Google Scholar 

  13. Wu DT, Bitzer M, Ju W, Mundel P, Bottinger EP. TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. J Am Soc Nephrol JASN. 2005;16(11):3211–21. doi:10.1681/asn.2004121055.

    Article  CAS  Google Scholar 

  14. Dawson MI, Zhang XK. Discovery and design of retinoic acid receptor and retinoid X receptor class- and subtype-selective synthetic analogs of all-trans-retinoic acid and 9-cis-retinoic acid. Curr Med Chem. 2002;9(6):623–37.

    Article  CAS  PubMed  Google Scholar 

  15. Marill J, Idres N, Capron CC, Nguyen E, Chabot GG. Retinoic acid metabolism and mechanism of action: a review. Curr Drug Metab. 2003;4(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Alisi A, Leoni S, Piacentani A. Conti Devirgiliis L. Retinoic acid modulates the cell-cycle in fetal rat hepatocytes and HepG2 cells by regulating cyclin-cdk activities. Liver Int. 2003;23(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  17. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10(9):940–54.

    CAS  PubMed  Google Scholar 

  18. Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006;46:451–80. doi:10.1146/annurev.pharmtox.46.120604.141156.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki Y, Shimada J, Shudo K, Matsumura M, Crippa MP, Kojima S. Physical interaction between retinoic acid receptor and Sp1: mechanism for induction of urokinase by retinoic acid. Blood. 1999;93(12):4264–76.

    CAS  PubMed  Google Scholar 

  20. Cheng YH, Yin P, Xue Q, Yilmaz B, Dawson MI, Bulun SE. Retinoic acid (RA) regulates 17beta-hydroxysteroid dehydrogenase type 2 expression in endometrium: interaction of RA receptors with specificity protein (SP) 1/SP3 for estradiol metabolism. J Clin Endocrinol Metab. 2008;93(5):1915–23. doi:10.1210/jc.2007-1536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Guo H, Cao C, Chi X, Zhao J, Liu X, Zhou N, et al. Specificity protein 1 regulates topoisomerase IIbeta expression in SH-SY5Y cells during neuronal differentiation. J Neurosci Res. 2014;92(10):1374–83. doi:10.1002/jnr.23403.

    Article  CAS  PubMed  Google Scholar 

  22. Islam MR, Puri S, Rodova M, Magenheimer BS, Maser RL, Calvet JP. Retinoic acid-dependent activation of the polycystic kidney disease-1 (PKD1) promoter. Am J Physiol Ren Physiol. 2008;295(6):F1845–54. doi:10.1152/ajprenal.90355.2008.

    Article  CAS  Google Scholar 

  23. Shimada J, Suzuki Y, Kim SJ, Wang PC, Matsumura M, Kojima S. Transactivation via RAR/RXR–Sp1 interaction: characterization of binding between Sp1 and GC box motif. Mol Endocrinol. 2001;15(10):1677–92. doi:10.1210/mend.15.10.0707.

    Article  CAS  PubMed  Google Scholar 

  24. Wu JB, Chen K, Ou XM, Shih JC. Retinoic acid activates monoamine oxidase B promoter in human neuronal cells. J Biol Chem. 2009;284(25):16723–35. doi:10.1074/jbc.M901779200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Xing Y, Ding J, Fan Q, Guan N. Diversities of podocyte molecular changes induced by different antiproteinuria drugs. Exp Biol Med (Maywood). 2006;231(5):585–93.

    CAS  Google Scholar 

  26. Su XM, Ren W, Lu C, Chen JQ, Wu SH, Chen RH, et al. Functional characterization of the regulatory region of human CD2-associated protein promoter in HEK 293 cells. Am J Nephrol. 2009;29(3):203–12. doi:10.1159/000155658.

    Article  CAS  PubMed  Google Scholar 

  27. Xu HG, Ren W, Zou L, Wang Y, Jin R, Zhou GP. Transcriptional control of human CD2AP expression: the role of Sp1 and Sp3. Mol Biol Rep. 2012;39(2):1479–86. doi:10.1007/s11033-011-0885-0.

    Article  CAS  PubMed  Google Scholar 

  28. Zou L, Xu HG, Ren W, Jin R, Wang Y, Zhou GP. Transcriptional activation of the human CD2AP promoter by E2F1. PLoS One. 2012;7(8):e42774. doi:10.1371/journal.pone.0042774.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Numbers 30872804 and 81170661 (to G.P.Z.), 81302531 (to H.G.X.)], Natural Science Foundation of Jiangsu Province of China [Grant Number BK20131018 (to H.G.X.)], Specialized Research Fund for the Doctoral Program of Higher Education [Grant Number 20113234110010 (to G.P.Z.)], and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study formal consent is not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HG., Jin, R., Gao, S. et al. All-trans retinoic acid up-regulates the human CD2AP gene expression through Sp1/Sp3 binding sites. Immunol Res 62, 273–279 (2015). https://doi.org/10.1007/s12026-015-8658-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8658-9

Keywords

Navigation