Skip to main content
Log in

Detection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Purpose

Cadaver-detection dogs use volatile organic compounds (VOCs) to search for human remains including those deposited on or beneath soil. Soil can act as a sink for VOCs, causing loading of decomposition VOCs in the soil following soft tissue decomposition. The objective of this study was to chemically profile decomposition VOCs from surface decomposition sites after remains were removed from their primary location.

Methods

Pig carcasses were used as human analogues and were deposited on a soil surface to decompose for 3 months. The remains were then removed from each site and VOCs were collected from the soil for 7 months thereafter and analyzed by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS).

Results

Decomposition VOCs diminished within 6 weeks and hydrocarbons were the most persistent compound class. Decomposition VOCs could still be detected in the soil after 7 months using Principal Component Analysis.

Conclusions

This study demonstrated that the decomposition VOC profile, while detectable by GC×GC–TOFMS in the soil, was considerably reduced and altered in composition upon removal of remains. Chemical reference data is provided by this study for future investigations of canine alert behavior in scenarios involving scattered or scavenged remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rebmann A, David E, Sorg MH, editors. Dog basics. In: Cadaver dog handbook: forensic training and tactics for the recovery of human remains. Boca Raton: CRC Press; 2000. p. 5–22.

  2. Rebmann A, David E, Sorg MH, editors. Behind the scenes: taphonomy. In: Cadaver dog handbook: forensic training and tactics for the recovery of human remains. Boca Raton: CRC Press; 2000. p. 116–23.

  3. Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA. Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int. 2009;186:6–13.

    Article  CAS  PubMed  Google Scholar 

  4. Stadler S, Stefanuto PH, Byer JD, Brokl M, Forbes S, Focant JF. Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. J Chromatogr A. 2012;1255:202–6.

    Article  CAS  PubMed  Google Scholar 

  5. Komar D. The use of cadaver dogs in locating scattered, scavenged human remains: preliminary field test results. J Forensic Sci. 1999;44:405–8.

    CAS  PubMed  Google Scholar 

  6. Asensio D, Peñuelas J, Filella I, Llusià J. On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil. 2007;291:249–61.

    Article  CAS  Google Scholar 

  7. Alexander MB, Hodges TK, Bytheway J, Aitkenhead-Peterson JA. Application of soil in Forensic Science: residual odor and HRD dogs. Forensic Sci Int. 2015;249:304–13.

    Article  PubMed  Google Scholar 

  8. France DL, Griffin TJ, Swanburg JG, et al. A multidisciplinary approach to the detection of clandestine graves. J Forensic Sci. 1992;37:1445–58.

    Google Scholar 

  9. Mesloh C, Wolf R, Henych M. Scent as forensic evidence and its relationship to the law enforcement canine. J Forensic Ident. 2002;52:169–82.

    Google Scholar 

  10. Statheropoulos M, Agapiou A, Zorba E, Mikedi K, Karma S, Pallis GC, et al. Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int. 2011;210:154–63.

    Article  CAS  PubMed  Google Scholar 

  11. Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA. Odor analysis of decomposing buried human remains. J Forensic Sci. 2008;53:384–91.

    Article  CAS  PubMed  Google Scholar 

  12. Vass AA. Odor mortis. Forensic Sci Int. 2012;222:234–41.

    Article  PubMed  Google Scholar 

  13. Statheropoulos M, Spiliopoulou C, Agapiou A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int. 2005;153:147–55.

    Article  CAS  PubMed  Google Scholar 

  14. Statheropoulos M, Agapiou A, Spiliopoulou C, Pallis GC, Sianos E. Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ. 2007;385:221–7.

    Article  CAS  PubMed  Google Scholar 

  15. Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int. 2009;189:46–53.

    Article  CAS  PubMed  Google Scholar 

  16. Stadler S, Stefanuto PH, Brokl M, Forbes SL, Focant JF. Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem. 2013;85:998–1005.

    Article  CAS  PubMed  Google Scholar 

  17. Kalinová B, Podskalská H, Růzicka J, Hoskovec M. Irresistible bouquet of death—how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften. 2009;96:889–99.

    Article  PubMed  Google Scholar 

  18. Brasseur C, Dekeirsschieter J, Schotsmans EMJ, de Koning S, Wilson AS, Haubruge E, Focant JF. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A. 2012;1255:163–70.

    Article  CAS  PubMed  Google Scholar 

  19. Dekeirsschieter J, Stefanuto PH, Brasseur C, Haubruge E, Focant JF. Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC–TOFMS). PLoS ONE. 2012;7:e39005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Stefanuto PH, Perrault K, Stadler S, Pesesse R, Brokl M, Forbes S, et al. Reading cadaveric decomposition chemistry with a new pair of glasses. ChemPlusChem. 2014;79:786–9.

    Article  CAS  Google Scholar 

  21. Schoenly KG, Haskell NH, Mills DK, Bieme-Ndi C. Recreating death’s acre in the school yard: using pig carcasses as model corpses to teach concepts of forensic entomology & ecological succession. Am Biol Teach. 2006;68:402–10.

    Article  Google Scholar 

  22. Cablk ME, Szelagowski EE, Sagebiel JC. Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int. 2012;220:118–25.

    Article  CAS  PubMed  Google Scholar 

  23. Forbes SL, Perrault KA. Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS ONE. 2014;9:e95107.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rosier E, Cuypers E, Dekens M, Verplaetse R, Develter W, Van de Voorde W, et al. Development and validation of a new TD-GC/MS method and its applicability in the search for human and animal decomposition products. Anal Bioanal Chem. 2014;406:3611–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Megyesi MS, Nawrocki SP, Haskell NH. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci. 2005;50:618–26.

    Article  PubMed  Google Scholar 

  26. Perrault KA, Stuart BH, Forbes SL. A longitudinal study of decomposition odour in soil using sorbent tubes and solid phase microextraction. Chromatography. 2014;1:120–40.

    Article  Google Scholar 

  27. Perrault KA, Stefanuto PH, Stuart BH, Rai T, Focant JF, Forbes SL. Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J Sep Sci. 2014;38:73–80.

    Article  PubMed  Google Scholar 

  28. Lewis T, Crockett AB, Siegrist R. Soil sampling and analysis for volatile organic compounds. Environ Monit Assess. 1994;30:213–46.

    Article  CAS  PubMed  Google Scholar 

  29. Killam EW. The detection of human remains. Springfield: Charles C Thomas Publisher; 2004.

    Google Scholar 

  30. DeGreeff LE, Furton KG. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials. Anal Bioanal Chem. 2011;401:1295–307.

    Article  CAS  PubMed  Google Scholar 

  31. Korpi A, Järnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39:139–93.

    Article  CAS  PubMed  Google Scholar 

  32. Leff JW, Fierer N. Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem. 2008;40:1629–36.

    Article  CAS  Google Scholar 

  33. McNeal KS, Herbert BE. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci Soc Am J. 2009;73:579–88.

    Article  CAS  Google Scholar 

  34. Boucher FR, Lee FG. Adsorption of lindane and dieldrin pesticides on unconsolidated aquifer sands. Environ Sci Technol. 1972;6:538–43.

    Article  CAS  Google Scholar 

  35. Lotse E, Graetz D, Chesters G. Lindane adsorption by lake sediments. Environ Sci Technol. 1968;2:353–7.

    Article  CAS  Google Scholar 

  36. Karickhoff S, Brown D, Scott T. Sorption of hydrophobic pollutants on natural sediments. Water Res. 1979;13:241–8.

    Article  CAS  Google Scholar 

  37. Ruiz J, Bilbao R, Murillo MB. Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity. Environ Sci Technol. 1998;32:1079–84.

    Article  CAS  Google Scholar 

  38. Serrano A, Gallego M. Sorption study of 25 volatile organic compounds in several Mediterranean soils using headspace–gas chromatography–mass spectrometry. J Chromatogr A. 2006;1118:261–70.

    Article  CAS  PubMed  Google Scholar 

  39. Vass AA, Smith RR, Thompson CV, Burnett MN, Wolf DA, Synstelien JA, et al. Decompositional odor analysis database. J Forensic Sci. 2004;49:760–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lorenzo N, Wan T, Harper RJ, Hsu YL, Chow M, Rose S, et al. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal Bioanal Chem. 2003;76:1212–24.

    Article  Google Scholar 

  41. Kasper J, Mumm R, Ruther J. The composition of carcass volatile profiles in relation to storage time and climate conditions. Forensic Sci Int. 2014;223:64–71.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. David Bishop, LECO Australia and SGE Analytical Science, for support and equipment for this study. Mention is given to Dr. Jean-Marie Dimandja for providing chemical reference standards. This research was funded in part by the Australian Research Council (ARC) and the University of Technology Sydney (UTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelynn A. Perrault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrault, K.A., Stefanuto, PH., Stuart, B.H. et al. Detection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site. Forensic Sci Med Pathol 11, 376–387 (2015). https://doi.org/10.1007/s12024-015-9693-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-015-9693-5

Keywords

Navigation