Skip to main content

Forensic Analysis of Volatile Organic Compounds from Decomposed Remains in a Soil Environment

  • Conference paper
  • First Online:
Soil in Criminal and Environmental Forensics

Part of the book series: Soil Forensics ((SOFO))

Abstract

The detection of clandestine graves or concealed remains can pose a challenge to investigators. Research into the chemical signatures of decomposition, including volatile organic compounds (VOCs), can aid in the development of improved methods for the detection of remains and can further the understanding of decomposition processes. Over the last decade a number of studies have investigated decomposition VOCs from a variety of soil environments. However due to the variety of environments and methods used during these investigations a consistent odour signature remains elusive. This paper will discuss the complexity of decomposition odour and the current knowledge base of decomposition VOCs within soil environments including the impact of the entire death assemblage on the production of VOCs. The use of advanced instrumentation such as comprehensive two dimensional gas chromatography – time-of-flight mass spectrometry for the characterisation of decomposition odour is proposed. Incorporating advanced instrumentation and data handling tools into the analysis of decomposition odour will facilitate the comparison of odour profiles and generation of a consistent decomposition odour signature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agelopoulos NG, Pickett JA (1998) Headspace analysis in chemical ecology: effects of different sampling methods on ratios of volatile compounds present in headspace samples. J Chem Ecol 24:1161–1172

    Article  CAS  Google Scholar 

  • Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Colombia. J Forensic Sci 41:617–625

    Article  Google Scholar 

  • ASTM International (2004) D 6345 standard guide for selection of methods for active, integrative sampling of volatile organic compounds in air. ASTM Standards, West Conshohocken

    Google Scholar 

  • Augusto F, Koziel J, Pawliszyn J (2001) Design and validation of portable SPME devices for rapid field air sampling and diffusion-based calibration. Anal Chem 73:481–486

    Article  CAS  PubMed  Google Scholar 

  • Benninger LA, Carter DO, Forbes SL (2008) The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci Int 180:70–75

    Article  CAS  PubMed  Google Scholar 

  • Boumba VA, Ziavrou KS, Vougiouklakis T (2008) Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 174:133–151

    Article  CAS  PubMed  Google Scholar 

  • Brasseur C, Dekeirsschieter J, Schotsmans EMJ, de Koning S, Wilson AS, Haubruge E, Focant JF (2012) Comprehensive two dimensional gas chromatography-time-of-flight mass spectometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170

    Article  CAS  PubMed  Google Scholar 

  • Cablk ME, Szelagowski EE, Sagebiel JC (2012) Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int 220:118–125

    Article  CAS  PubMed  Google Scholar 

  • Carter DO, Tibbett M (2008) Cadaver decomposition and soil: processes: chemical and biological effects of buried human remains. In: Tibbett M, Carter DO (eds) Soil analysis in forensic Taphonomy. CRC Press, New York, pp 29–51

    Chapter  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  PubMed  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2008) Using ninhydrin to detect gravesoil. J Forensic Sci 53:397–400

    Article  CAS  PubMed  Google Scholar 

  • Clark MA, Worrell MB, Plessm JE (1997) Postmortem changes in soft tissues. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, New York, pp 151–164

    Google Scholar 

  • Cochran JW (2002) Fast gas chromatography-time-of-flight mass spectrometry of polychlorinated biphenyls and other environmental contaminants. J Chromatogr Sci 40:254–268

    Article  CAS  PubMed  Google Scholar 

  • Dalluge J, Vreuls RJ, Beens J, Brinkman UA (2002) Optimization and characterization of comprehensive two-dimentional gas chromatography with time-of-flight mass spectometric detection (GCxGC-TOF MS). J Sep Sci 25:201–214

    Article  CAS  Google Scholar 

  • Dalluge J, Beens J, Brinkman UA (2003) Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J Chromatogr A 1000:69–108

    Article  CAS  PubMed  Google Scholar 

  • DeGreeff LE, Furton KG (2011) Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials. Anal Bioanal Chem 401:1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53

    Article  CAS  PubMed  Google Scholar 

  • Dekeirsschieter J, Stefanuto PH, Brasseur C, Haubruge E, Focant JF (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS ONE 7(6), e39005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition processes in soil. Eviron Geo 45:576–585

    Article  CAS  Google Scholar 

  • Erickson ED, Enke CG, Holland JF, Watson JT (1990) Application of time array detection to capillary column gas chromatography/conventional time-of-flight mass spectrometry. Anal Chem 62:1079–1084

    Article  CAS  PubMed  Google Scholar 

  • Focant JF, Sjodin A, Turner WE, Patterson DG Jr (2004) Measurement of selected polybrominated diphenyl ethers, polybrominated and polychlorinated biphenyls, and organochlorine pesticides in human serum and milk using comprehensive two-dimensional gas chromatography isotope dilution time-of-flight mass spectrometry. Anal Chem 76:6313–6320

    Article  CAS  PubMed  Google Scholar 

  • France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D, Adair T (1997) NecroSearch revisited: further multidisciplinary approaches to the detection of clandestine graves. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, New York, pp 497–509

    Google Scholar 

  • Frederickx C, Dekeirsschieter J, Brostaux Y, Wathelet JP, Verheggen FJ, Haubruge E (2012) Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology. Forensic Sci Int 219:215–220

    Article  CAS  PubMed  Google Scholar 

  • Giddings JC (1987) Concepts and comparisons in multidimensional separation. J High Resolut Chromatogr 10:319–323

    Article  CAS  Google Scholar 

  • Gill-King H (1997) Chemical and ultrastructural aspects of decomposition. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, New York, pp 93–108

    Google Scholar 

  • Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA (2009) Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 186:6–13

    Article  CAS  PubMed  Google Scholar 

  • Janaway RC, Percival SL, Wilson AS (2009) Decomposition of human remains. In: Percival SL (ed) Microbiology and aging. Springer Science + Business Media, New York, pp 313–334

    Chapter  Google Scholar 

  • Johnston JM (1999) Canine detection capabilities: operational implications of recent R & D Findings. Institute for Biological Detection Systems, Auburn

    Google Scholar 

  • Kalinova B, Podskalska H, Ruzicka J, Hoskovec M (2009) Irresistible bouquet of death—how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899

    Article  CAS  PubMed  Google Scholar 

  • Komar D (1999) The use of cadaver dogs in locating scattered, scavenged human remains: preliminary field test results. J Forensic Sci 44:405–408

    Article  CAS  PubMed  Google Scholar 

  • Lasseter AE, Jacobi KP, Farley R, Hensel L (2003) Cadaver dog and handler team capabilities in the recovery of buried human remains in the southeastern United States. J Forensic Sci 48:617–621

    Article  PubMed  Google Scholar 

  • Lawson MJ, Craven BA, Paterson EG, Settles GS (2012) A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chem Senses 37:553–566

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo N, Wan T, Harper RJ, Hsu YL, Chow M, Rose S, Furton KG (2003) Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal Bioanal Chem 376:1212–1224

    Article  CAS  PubMed  Google Scholar 

  • Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35:103–111

    CAS  PubMed  Google Scholar 

  • McClenny EAWWA (1999) Compendium method TO-17: determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes. U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Oesterhelweg L, Krober S, Rottmann K, Willhoft J, Braun C, Thies N, Puschel K, Silkenath J, Gehl A (2008) Cadaver dogs—a study on detection of contaminated carpet squares. Forensic Sci Int 174:35–39

    Article  CAS  PubMed  Google Scholar 

  • Paczkowski S, Schutz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91:917–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry B (2011) State of Florida v. Casey Marie Anthony – Order denying motion to exclude unreliable evidence. 9th Judicial Circuit

    Google Scholar 

  • Rebmann A, David E, Sorg MH (2000) Cadaver dog handbook: forensic training and tactics for the recovery of human remains. CRC Press, New York

    Google Scholar 

  • Ribes A, Carrera G, Gallego E, Roca X, Berenguer MA, Guardino X (2007) Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. J Chromatogr A 1140:44–55

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JM, Sacks RD (2006) Development of a multibed sorption trap, comprehensive two-dimensional gas chromatography, and time-of-flight mass spectrometry system for the analysis of volatile organic compounds in human breath. Anal Chem 78:3046–3054

    Article  CAS  PubMed  Google Scholar 

  • Semard G, Mohamed A, Focant J-F (2009) Basic Instrumentation for GCxGC. In: Comprehensive Analytical Chemistry, vol 55. Elsevier, pp 15–48

    Google Scholar 

  • Schoenmakers P, Marriott P, Beens J (2003) Nomenclature and conventions in comprehensive multidimensional chromatography. Coupling Matters, Ellesmere Port

    Google Scholar 

  • Stadler S, Stefanuto PH, Brokl M, Forbes SL, Focant JF (2013) Characterization of volatile organic compounds from human analogue decompsoition using thermal desorption coupled to comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry. Anal Chem 85:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Statheropoulos M, Spiliopoulou C, Agapiou A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155

    Article  CAS  PubMed  Google Scholar 

  • Statheropoulos M, Mikedi K, Agapiou A, Georgiadou A, Karma S (2006) Discriminant analysis of volatile organic compounds data related to a new location method of entrapped people in collapsed buildings of an earthquake. Anal Chim Acta 566:207–216

    Article  CAS  Google Scholar 

  • Statheropoulos M, Agapiou A, Spiliopoulou C, Pallis GC, Sianos E (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ 385:221–227

    Article  CAS  PubMed  Google Scholar 

  • Statheropoulos M, Agapiou A, Zorba E, Mikedi K, Karma S, Pallis GC, Eliopoulos C, Spiliopoulou C (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210:154–163

    Article  CAS  PubMed  Google Scholar 

  • Swann L, Chidlow GE, Forbes S, Lewis SW (2010a) Preliminary studies into the characterization of chemical markers of decomposition for geoforensics. J Forensic Sci 55:308–314

    Article  CAS  PubMed  Google Scholar 

  • Swann L, Forbes S, Lewis SW (2010b) Observations of the temporal variation in chemical content of decomposition fluid: a preliminary study using pigs as a model system. Aust J Forensic Sci 42:199–210

    Article  Google Scholar 

  • Swann LM, Forbes SL, Lewis SW (2010c) Analytical separations of mammalian decomposition products for forensic science: a review. Anal Chim Acta 682:9–22

    Article  CAS  PubMed  Google Scholar 

  • Van Belle LE, Carter DO, Forbes SL (2009) Measurement of ninhydrin reactive nitrogen influx into gravesoil during aboveground and belowground carcass (Sus domesticus) decomposition. Forensic Sci Int 193:37–41

    Article  PubMed  Google Scholar 

  • Vass AA (2012) Odor mortis. Forensic Sci Int 222:234–241

    Article  PubMed  Google Scholar 

  • Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death determinations of human cadavers using soil solution. J Forensic Sci 37:1236–1253

    Article  CAS  PubMed  Google Scholar 

  • Vass AA, Barshick SA, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA (2002) Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci 47:542–553

    CAS  PubMed  Google Scholar 

  • Vass AA, Smith RR, Thompson CV, Burnett MN, Wolf DA, Synstelien JA, Dulgerian N, Eckenrode BA (2004) Decompositional odor analysis database. J Forensic Sci 49:760–769

    Article  CAS  PubMed  Google Scholar 

  • Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA (2008) Odor analysis of decomposing buried human remains. J Forensic Sci 53:384–391

    Article  CAS  PubMed  Google Scholar 

  • Venkatramani CJ, Xu J, Phillips JB (1996) Separation orthogonality in temperature-programmed comprehensive two-dimensional gas chromatography. Anal Chem 68:1486–1492

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shari L. Forbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stadler, S., Focant, JF., Forbes, S.L. (2016). Forensic Analysis of Volatile Organic Compounds from Decomposed Remains in a Soil Environment. In: Kars, H., van den Eijkel, L. (eds) Soil in Criminal and Environmental Forensics. Soil Forensics. Springer, Cham. https://doi.org/10.1007/978-3-319-33115-7_19

Download citation

Publish with us

Policies and ethics