Skip to main content
Log in

Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, J. S., Druzgal, T. J., Froehlich, A., DuBray, M. B., Lange, N., Alexander, A. L., et al. (2011). Decreased interhemispheric functional connectivity in autism. Cerebral Cortex, 21(5), 1134–1146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T., Krienen, F., Buckner, R. L., et al. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 109–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, R., & Herskovits, E. H. (2005). Graphical-model based morphometric analysis. IEEE Transactions on Medical Imaging, 24(10), 1237–1248.

    Article  PubMed  Google Scholar 

  • Chen, R., & Herskovits, E. H. (2007a). Clinical diagnosis based on Bayesian classification of functional magnetic-resonance data. Neuroinformatics, 5(3), 178–188.

    Article  PubMed  Google Scholar 

  • Chen, R., & Herskovits, E. H. (2007b). Graphical-model-based multivariate analysis of functional magnetic resonance data. NeuroImage, 35, 635–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Craddock, R. C., Jbabdi, S., Yan, C. G., Vogelstein, J. T., Castellanos, F. X., Di Martino, A., et al. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13(1), 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208–225.

    Article  PubMed  Google Scholar 

  • Heckerman, D., & Chickering, D. M. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20-197.

  • Homack, S., Lee, D., & Riccio, C. A. (2005). Test review: delis-Kaplan executive function system. Journal of Clinical and Experimental Neuropsychology, 27(5), 599–609.

    Article  PubMed  Google Scholar 

  • Hong, L. E., Gu, H., Yang, Y., Ross, T. J., Salmeron, B. J., Buchholz, B., et al. (2009). Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Archives of General Psychiatry, 66(4), 431–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, L. E., Hodgkinson, C. A., Yang, Y., Sampath, H., Ross, T. J., Buchholz, B., et al. (2010). A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13509–13514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL NeuroImage, 62, 782–790.

    Article  PubMed  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(Pt 8), 1811–1821.

    Article  PubMed  Google Scholar 

  • Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. Cambridge: The MIT Press.

    Google Scholar 

  • Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.

    Article  CAS  PubMed  Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook Jr., E. H., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, H., Skokauskas, N., Mulligan, A., Donohoe, G., Mullins, D., Kelly, J., et al. (2013). Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatry, 70(12), 1329–1337.

    Article  PubMed  Google Scholar 

  • Monk, C. S., Peltier, S. J., Wiggins, J. L., Weng, S. J., Carrasco, M., Risi, S., et al. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage, 47(2), 764–772.

    Article  PubMed  PubMed Central  Google Scholar 

  • NIH (2014). Brain research through advancing innovative neurotechnologies (BRAIN) working group report to the advisory committee to the director, NIH

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosner, B. (2010). Fundamentals of biostatistics (Seventh ed., ). Boston: Brooks/Cole.

    Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.

    Article  PubMed  Google Scholar 

  • Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6(9), e25031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, L., Ge, Y., Sodickson, D. K., Miles, L., Zhou, Y., Reaume, J., et al. (2011). Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology, 260(3), 831–840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner, K. C., Frost, L., Linsenbardt, D., McIlroy, J. R., & Muller, R. A. (2006). Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behavioral and Brain Functions, 2, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Vissers, M. E., Cohen, M. X., & Geurts, H. M. (2012). Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neuroscience and Biobehavioral Reviews, 36(1), 604–625.

    Article  PubMed  Google Scholar 

  • von dem Hagen, E. A., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2013). Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Social Cognitive and Affective Neuroscience, 8(6), 694–701.

    Article  Google Scholar 

  • Wang, Q., Chen, R., JaJa, J., Jin, Y., Hong, L. E., & Herskovits, E. H. (2015). Connectivity-based brain parcellation: a connectivity-based atlas for schizophrenia research. Neuroinformatics. doi:10.1007/s12021-015-9280-7.

  • Weng, S. J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., et al. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research, 1313, 202–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141.

    Article  PubMed  Google Scholar 

  • Woodward, N. D., Rogers, B., & Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research, 130(1–3), 86–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Center for Health-related Informatics and Bioimaging (CHIB) under Maryland’s MPower Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen.

Appendix

Appendix

An Example Study

In this example, we demonstrate how to implement a large-scale seed-based analysis using ACA. This example is included in the ACA package as a test data set. We analyzed imaging and behavior data from the Nathan Kline Institute (NKI)/Rockland sample (downloaded from http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). The NKI/Rockland sample includes 204 normal subjects. For each subject, a ten minute rs-fMRI scan was provided. In this example, our primary outcome variable was age. The validation behavior variable was the score of the Delis-Kaplan Executive Function sorting test (confirmed correct sorts), which is a problem solving task (Homack et al. 2005). This behavior variable has been implicated in general overall executive function which is associated with age.

The T1 and rs-fMRI data were preprocessed using ACA. For each seed region, the rsFC maps for all subjects were saved in a directory. For seed-based analysis, the first step was to create a project file. We created a CSV file to define the imaging data, consisting of three columns: the first column was the subject name, the second column was the primary outcome variable, and the third column represented whether or not this subject was excluded. Then we created a CSV file, which included the behavior variables. The first column of the behavior variable file was the subject ID; and the subsequent variables were behavior variables. For both the imaging and behavior CSV files, we created an associated data type file. If a variable was continuous, its type was coded as ‘1’. If a variable was categorical, its type was coded as ‘2’.

When the imaging and behavior CSV files were complete, we conducted the analysis. The user interface of ACA is simple. We opened a Linux/Unix terminal, went to the project home directory which included the raw rsFC maps, and the imaging and behavior CSV file, and then typed commands. For step by step analysis, we first typed aca_sba_ana_1a.sh to prepare data and generate study masks. Then we typed aca_sba_ana_2a.sh, aca_sba_ana_2b.sh, or aca_sba_ana_2c.sh for biomarker detection. aca_sba_ana_2a.sh is for biomarker detection based on regression, aca_sba_ana_2b.sh is based on ANOVA, and aca_sba_ana_2c.sh is GAMMA-based biomarker detection. In this example, the primary outcome variable was a continuous variable; therefore, we used aca_sba_ana_2a.sh for biomarker detection. After biomarker detection, we typed aca_sba_ana_3a.sh for brain-behavior analysis. Then we typed aca_sba_summarize_1.sh to summarize the detected biomarkers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Nixon, E. & Herskovits, E. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment. Neuroinform 14, 191–199 (2016). https://doi.org/10.1007/s12021-015-9290-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-015-9290-5

Keywords

Navigation