Skip to main content
Log in

Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

  • Hypertension and bone
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the renin–angiotensin–aldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD). In addition to increased PTH levels, low vitamin D levels may also directly increase risk of CVD, as vitamin D, itself, has been shown to inhibit the RAAS. Angiotensin II, aldosterone and cortisol all negatively impact bone health. Hyperaldosteronism is associated with a reversible secondary hyperparathyroidism due to increased renal calcium excretion. Moreover, the angiotensin II receptor is expressed by human parathyroid tissue, and angiotensin may therefore directly stimulates PTH secretion. An increased bone loss is found in patients with hyperaldosteronism. The angiotensin II receptor seems main responsible for the RAAS-initiated bone loss due to a receptor activator of NF-κB ligand-mediated activation of the osteoclasts. Available data suggest a reduced fracture rate and increased bone mineral density in patients treated with angiotensin II receptor blockers, whereas treatment with angiotensin-converting enzyme inhibitors causes the opposite effects. Mineralocorticoid receptor antagonists seem to be beneficial to bone in patients with hyperaldosteronism, but it is unknown whether this also applies to other individuals. Further long-term studies are needed to clarify the effect of RAAS inhibitors on bone health. RAAS inhibitors, are widely prescribed worldwide and beneficial as well as harmful effects may have large impact on bone health in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACEi:

Angiotensin-converting enzyme inhibitor

ACTH:

Adrenocorticotropic hormone

ALP:

Alkaline phosphatase

Ang II:

Angiotensin II

APA:

Aldosterone-producing adenoma

ARB:

Angiotensin II receptor blocker

AT1R:

Angiotensin II type 1 receptor

AT2R:

Angiotensin II type 2 receptor

BAH:

Bilateral adrenal hyperplasia

BMD:

Bone mineral density

BP:

Blood pressure

Ca:

Calcium

CVD:

Cardiovascular disease

CTx:

C-terminal telopeptide of type 1 collagen

GnRH:

Gonadotropin-releasing hormone

MR:

Mineralocorticoid receptor

MRA:

Mineralocorticoid receptor antagonist

OC:

Osteocalcin

PA:

Primary aldosteronism

PCOS:

Polycystic ovary syndrome

PTH:

Parathyroid hormone

PPHT:

Primary hyperparathyroidism

PTX:

Parathyroidectomy

SA:

Secondary aldosteronism

SHPT:

Secondary hyperparathyroidism

RAAS:

Renin–angiotensin–aldosterone system

RAASi:

RAAS inhibitors

SA:

Secondary aldosteronism

RANKL:

Receptor activator of NF-κB ligand

References

  1. Brown JM, Williams JS, Luther JM, et al. Human interventions to characterize novel relationships between the renin-angiotensin-aldosterone system and parathyroid hormone. Hypertension. 2014;63:273–80. doi:10.1161/HYPERTENSIONAHA.113.01910.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Grant FD, Mandel SJ, Brown EM, et al. Interrelationships between the renin-angiotensin-aldosterone and calcium homeostatic systems. J Clin Endocrinol Metab. 1992;75:988–92.

    CAS  PubMed  Google Scholar 

  3. Tomaschitz A, Pilz S. Interplay between sodium and calcium regulatory hormones: a clinically relevant research field. Hypertension. 2014;63:212–4. doi:10.1161/HYPERTENSIONAHA.113.02253.

    Article  CAS  PubMed  Google Scholar 

  4. Nilsson IL, Aberg J, Rastad J, Lind L. Left ventricular systolic and diastolic function and exercise testing in primary hyperparathyroidism-effects of parathyroidectomy. Surgery. 2000;128:895–902.

    Article  CAS  PubMed  Google Scholar 

  5. Piovesan A, Molineri N, Casasso F, et al. Left ventricular hypertrophy in primary hyperparathyroidism. Effects of successful parathyroidectomy. Clin Endocrinol (Oxf). 1999;50:321–8.

    Article  CAS  Google Scholar 

  6. Vestergaard P, Mollerup CL, Frøkjaer VG, et al. Cardiovascular events before and after surgery for primary hyperparathyroidism. World J Surg. 2003;27:216–22.

    Article  PubMed  Google Scholar 

  7. Rosa J, Raska I, Wichterle D, et al. Pulse wave velocity in primary hyperparathyroidism and effect of surgical therapy. Hypertens Res. 2011;34:296–300. doi:10.1038/hr.2010.232.

    Article  PubMed  Google Scholar 

  8. Sprini D, Rini GB, Di Stefano L, et al. Correlation between osteoporosis and cardiovascular disease. Clin cases Miner bone Metab. 2014;1:117–9.

    Google Scholar 

  9. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014;2:307–20. doi:10.1016/S2213-8587(13)70212-2.

    Article  CAS  PubMed  Google Scholar 

  10. Brown J, de Boer IH, Robinson-Cohen C, et al. Aldosterone, parathyroid hormone, and the use of renin-angiotensin-aldosterone system inhibitors: the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2014;. doi:10.1210/jc.2014-3949.

    Google Scholar 

  11. Pilz S, Tomaschitz A, Drechsler C, et al. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur Heart J. 2010;31:1591–8. doi:10.1093/eurheartj/ehq109.

    Article  CAS  PubMed  Google Scholar 

  12. Lasco A, Catalano A, Morabito N, et al. Adrenal effects of teriparatide in the treatment of severe postmenopausal osteoporosis. Osteoporos Int. 2011;22:299–303. doi:10.1007/s00198-010-1222-5.

    Article  CAS  PubMed  Google Scholar 

  13. Maniero C, Fassina A, Guzzardo V, et al. Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension. 2011;58:341–6. doi:10.1161/HYPERTENSIONAHA.111.173948.

    Article  CAS  PubMed  Google Scholar 

  14. Mazzocchi G, Aragona F, Malendowicz LK, Nussdorfer GG. PTH and PTH-related peptide enhance steroid secretion from human adrenocortical cells. Am J Physiol Endocrinol Metab. 2001;280:E209–13.

    CAS  PubMed  Google Scholar 

  15. Hulter H, Melby JC, Peterson JC, Cooke CR. Chronic continuous PTH infusion results in hypertension in normal subjects. J Clin Hypertens. 1986;2:360–70.

    CAS  PubMed  Google Scholar 

  16. Isales CM, Barrett PQ, Brines M, et al. Parathyroid hormone modulates angiotensin II-induced aldosterone secretion from adrenal glomerulosa cell. Endocr Soc. 1991;129:489–95.

    Article  CAS  Google Scholar 

  17. Nainby-Luxmoore JC, Langford HG, Nelson NC, et al. A case-comparison study of hypertension and hyperparathyroidism. J Clin Endocrinol Metab. 1982;55:303–6.

    Article  CAS  PubMed  Google Scholar 

  18. Letizia C, Ferrari P, Cotesta D, et al. Ambulatory monitoring of blood pressure (AMBP) in patients with primary hyperparathyroidism. J Hum Hypertens. 2005;19:901–6.

    Article  CAS  PubMed  Google Scholar 

  19. Nilsson I-L, Yin L, Lundgren E, et al. Clinical presentation of primary hyperparathyroidism in Europe–nationwide cohort analysis on mortality from nonmalignant causes. J Bone Miner Res. 2002;17(Suppl 2):N68–74.

    PubMed  Google Scholar 

  20. Yu N, Donnan PT, Leese GP. A record linkage study of outcomes in patients with mild primary hyperparathyroidism: the Parathyroid Epidemiology and Audit Research Study (PEARS). Clin Endocrinol (Oxf). 2011;75:169–76. doi:10.1111/j.1365-2265.2010.03958.x.

    Article  Google Scholar 

  21. Hedbäck G, Odén A. Increased risk of death from primary hyperparathyroidism–an update. Eur J Clin Invest. 1998;28:271–6.

    Article  PubMed  Google Scholar 

  22. Silverberg SJ, Clarke BL, Peacock M, et al. Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop. 2015;99:3580–3594. doi:10.1210/jc.2014-1415.

  23. Brunaud L, Germain A, Zarnegar R, et al. Serum aldosterone is correlated positively to parathyroid hormone (PTH) levels in patients with primary hyperparathyroidism. Surgery. 2009;146:1035–41. doi:10.1016/j.surg.2009.09.041.

    Article  PubMed  Google Scholar 

  24. Gianotti L, Tassone F, Pia A, et al. May an altered hypothalamo-pituitary-adrenal axis contribute to cortical bone damage in primary hyperparathyroidism? Calcif Tissue Int. 2009;84:425–9. doi:10.1007/s00223-009-9245-7.

    Article  CAS  PubMed  Google Scholar 

  25. Jespersen B, Pedersen EB, Charles P, et al. Elevated angiotensin II and vasopressin in primary hyperparathyroidism. Angiotensin II infusion studies before and after removal of the parathyroid adenoma. Acta Endocrinol (Copenh). 1989;120:362–8.

    CAS  Google Scholar 

  26. Gavras I, Hatinoglou S, Benetos A, Gavras H. Calcium stimulates vasopressin release. J Hypertens. 1986;4:451–4.

    Article  CAS  PubMed  Google Scholar 

  27. Vimaleswaran KS, Cavadino A, Berry DJ, et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2:719–29. doi:10.1016/S2213-8587(14)70113-5.

    Article  CAS  PubMed  Google Scholar 

  28. Krause R, Bühring M, Hopfenmüller W, et al. Ultraviolet B and blood pressure. Lancet. 1998;352:709–10.

    Article  CAS  PubMed  Google Scholar 

  29. Pfeifer M, Begerow B, Minne HW, et al. Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. J Clin Endocrinol Metab. 2001;86:1633–7.

    CAS  PubMed  Google Scholar 

  30. Sugden JA, Davies JI, Witham MD, et al. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabet Med. 2008;25:320–5. doi:10.1111/j.1464-5491.2007.02360.x.

    Article  CAS  PubMed  Google Scholar 

  31. Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152:307–14. doi:10.7326/0003-4819-152-5-201003020-00009.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Li YC, Qiao G, Uskokovic M, et al. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89–90:387–92.

    Article  PubMed  Google Scholar 

  33. Tomaschitz A, Pilz S, Ritz E, et al. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system. The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta. 2010;411:1354–60. doi:10.1016/j.cca.2010.05.037.

    Article  CAS  PubMed  Google Scholar 

  34. Forman JP, Williams JS, Fisher NDL. Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension. 2010;55:1283–8. doi:10.1161/HYPERTENSIONAHA.109.148619.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Vaidya A, Sun B, Larson C, et al. Vitamin D3 therapy corrects the tissue sensitivity to angiotensin ii akin to the action of a converting enzyme inhibitor in obese hypertensives: an interventional study. J Clin Endocrinol Metab. 2012;97:2456–65. doi:10.1210/jc.2012-1156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Funder JW, Carey RM, Fardella C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:3266–81. doi:10.1210/jc.2008-0104.

    Article  CAS  PubMed  Google Scholar 

  37. Milliez P, Girerd X, Plouin P-F, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8.

    Article  CAS  PubMed  Google Scholar 

  38. Salcuni AS, Palmieri S, Carnevale V, et al. Bone involvement in aldosteronism. J Bone Miner Res. 2012;27:2217–22. doi:10.1002/jbmr.1660.

    Article  CAS  PubMed  Google Scholar 

  39. Chhokar VS, Sun Y, Bhattacharya SK, et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005;111:871–8.

    Article  CAS  PubMed  Google Scholar 

  40. Law PH, Sun Y, Bhattacharya SK, et al. Diuretics and bone loss in rats with aldosteronism. J Am Coll Cardiol. 2005;46:142–6.

    Article  CAS  PubMed  Google Scholar 

  41. Chhokar VS, Sun Y, Bhattacharya SK, et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287:H2023–6.

    Article  CAS  PubMed  Google Scholar 

  42. Runyan AL, Chhokar VS, Sun Y, et al. Bone loss in rats with aldosteronism. Am J Med Sci. 2005;330:1–7.

    Article  PubMed  Google Scholar 

  43. Ceccoli L, Ronconi V, Giovannini L, et al. Bone health and aldosterone excess. Osteoporos Int. 2013;24:2801–7.

    Article  CAS  PubMed  Google Scholar 

  44. Pilz S, Kienreich K, Drechsler C, et al. Hyperparathyroidism in patients with primary aldosteronism: cross-sectional and interventional data from the GECOH study. J Clin Endocrinol Metab. 2012;97:75–9. doi:10.1210/jc.2011-2183.

    Article  Google Scholar 

  45. Rossi E, Sani C, Perazzoli F, et al. Alterations of the calcium metabolism and of parathyroid function in primary aldosteronism and their revertal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am J Hypertens. 1995;7061:884–93.

    Article  Google Scholar 

  46. Maniero C, Fassina A, Seccia TM, et al. Mild hyperparathyroidism: a novel surgically correctable feature of primary aldosteronism. J Hypertens. 2012;30:390–5. doi:10.1097/HJH.0b013e32834f0451.

    Article  CAS  PubMed  Google Scholar 

  47. Resnick LM, Laragh JH. Calcium metabolism and parathyroid function in primary aldosteronism. Am J Med. 1985;78:385–90.

    Article  CAS  PubMed  Google Scholar 

  48. Rossi GP, Ragazzo F, Seccia TM, et al. Hyperparathyroidism can be useful in the identification of primary aldosteronism due to aldosterone-producing adenoma. Hypertension. 2012;60:431–6. doi:10.1161/HYPERTENSIONAHA.112.195891.

    Article  CAS  PubMed  Google Scholar 

  49. Giacchetti G, Ronconi V, Lucarelli G, et al. Analysis of screening and confirmatory tests in the diagnosis of primary aldosteronism: need for a standardized protocol. J Hypertens. 2006;24:737–45.

    Article  CAS  PubMed  Google Scholar 

  50. Blumenfeld JD, Sealey JE, Schlussel Y, et al. Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med. 1994;121:877–85.

    Article  CAS  PubMed  Google Scholar 

  51. Afghani A. Hypertension and bone loss. Nova Biomedica/Nova Science Publishers; 2011. http://site.ebrary.com.ez.statsbiblioteket.dk:2048/lib/stats/reader.action?docID=10671131.

  52. Khouzam RN, Dishmon DA, Farah V, et al. Secondary hyperparathyroidism in patients with untreated and treated congestive heart failure. Am J Med Sci. 2006;331:30–4.

    Article  PubMed  Google Scholar 

  53. Mateus-Hamdan L, Beauchet O, Bouvard B, et al. High parathyroid hormone, but not low vitamin D concentrations, expose elderly inpatients to hypertension. Geriatr Gerontol Int. 2013;13:783–91. doi:10.1111/j.1447-0594.2012.00945.x.

    Article  PubMed  Google Scholar 

  54. Hatton R, Stimpel M, Chambers TJ. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol. 1997;152:5–10.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia P, Schwenzer S, Slotta JE, et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin-angiotensin system. Br J Pharmacol. 2010;159:1672–80. doi:10.1111/j.1476-5381.2010.00651.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Shimizu H, Nakagami H, Osako MK, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22:2465–75. doi:10.1096/fj.07-098954.

    Article  CAS  PubMed  Google Scholar 

  57. Kaneko K, Ito M, Fumoto T, et al. Physiological function of the angiotensin AT1a receptor in bone remodeling. J Bone Miner Res. 2011;26:2959–66. doi:10.1002/jbmr.501.

    Article  CAS  PubMed  Google Scholar 

  58. Asaba Y, Ito M, Fumoto T, et al. Activation of renin-angiotensin system induces osteoporosis independently of hypertension. J Bone Miner Res. 2009;24:241–50. doi:10.1359/jbmr.081006.

    Article  CAS  PubMed  Google Scholar 

  59. Hagiwara H, Hiruma Y, Inoue A, et al. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J Endocrinol. 1998;156:543–50.

    Article  CAS  PubMed  Google Scholar 

  60. Hiruma Y, Inoue A, Hirose S, Hagiwara H. Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun. 1997;230:176–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lamparter S, Kling L, Schrader M, et al. Effects of angiotensin II on bone cells in vitro. J Cell Physiol. 1998;175:89–98.

    Article  CAS  PubMed  Google Scholar 

  62. Vestergaard P, Rejnmark L, Mosekilde L. Hypertension is a risk factor for fractures. Calcif Tissue Int. 2009;84:103–11.

    Article  CAS  PubMed  Google Scholar 

  63. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet. 1999;354:971–5.

    Article  CAS  PubMed  Google Scholar 

  64. Tsuda K, Nishio I, Masuyama Y. Bone mineral density in women with essential hypertension. Am J Hypertens. 2001;14:704–7.

    Article  CAS  PubMed  Google Scholar 

  65. Koiwa F, Komukai D, Hirose M, et al. Influence of renin-angiotensin system on serum parathyroid hormone levels in uremic patients. Clin Exp Nephrol. 2012;16:130–5. doi:10.1007/s10157-011-0534-x.

    Article  CAS  PubMed  Google Scholar 

  66. Ma YF, Stimpel M, Liang H, et al. Impact of antihypertensive therapy on the skeleton: effects of moexipril and hydrochlorothiazide on osteopenia in spontaneously hypertensive ovariectomized rats. J Endocrinol. 1997;154:467–74.

    Article  CAS  PubMed  Google Scholar 

  67. Shimizu H, Nakagami H, Osako MK, et al. Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res. 2009;32:786–90. doi:10.1038/hr.2009.99.

    Article  CAS  PubMed  Google Scholar 

  68. Rajkumar DSR, Faitelson AV, Gudyrev OS, et al. Comparative evaluation of enalapril and losartan in pharmacological correction of experimental osteoporosis and fractures of its background. J Osteoporos. 2013. doi:10.1155/2013/325693.

    PubMed Central  PubMed  Google Scholar 

  69. Kang KY, Kang Y, Kim M, et al. The effects of antihypertensive drugs on bone mineral density in ovariectomized mice. J Korean Med Sci. 2013;28:1139–44. doi:10.3346/jkms.2013.28.8.1139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Mathai ML, Naik S, Sinclair AJ, et al. Selective reduction in body fat mass and plasma leptin induced by angiotensin-converting enzyme inhibition in rats. Int J Obes (Lond). 2008;32:1576–84. doi:10.1038/ijo.2008.126.

    Article  CAS  Google Scholar 

  71. Broulík PD, Tesař V, Zima T, Jirsa M. Impact of antihypertensive therapy on the skeleton: effects of enalapril and AT1 receptor antagonist losartan in female rats. Physiol Res. 2001;50:353–8.

    PubMed  Google Scholar 

  72. Ma L, Ji JL, Ji H, et al. Telmisartan alleviates rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. Bone. 2010;47:5–11. doi:10.1016/j.bone.2010.03.016.

    Article  CAS  PubMed  Google Scholar 

  73. Donmez BO, Ozdemir S, Sarikanat M, et al. Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol Rep. 2012;64:878–88.

    Article  CAS  PubMed  Google Scholar 

  74. Araújo AA, Souza TO, Moura LM, et al. Effect of telmisartan on levels of IL-1, TNF-α, down-regulated COX-2, MMP-2, MMP-9 and RANKL/RANK in an experimental periodontitis model. J Clin Periodontol. 2013;40:1104–11. doi:10.1111/jcpe.12160.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Izu Y, Mizoguchi F, Kawamata A, et al. Angiotensin II type 2 receptor blockade increases bone mass. J Biol Chem. 2009;284:4857–64. doi:10.1074/jbc.M807610200.

    Article  CAS  PubMed  Google Scholar 

  76. Araújo AA, Lopes De Souza G, Souza TO, et al. Olmesartan decreases IL-1β and TNF-α levels; Downregulates MMP-2, MMP-9, COX-2, and RANKL; and upregulates OPG in experimental periodontitis. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:875–84. doi:10.1007/s00210-013-0886-8.

    Article  PubMed  Google Scholar 

  77. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens. 2006;24:581–9.

    Article  CAS  PubMed  Google Scholar 

  78. Choi HJ, Park C, Lee Y-K, et al. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015;184:62–7. doi:10.1016/j.ijcard.2015.01.072.

    Article  PubMed  Google Scholar 

  79. Solomon DH, Mogun H, Garneau K, Fischer MA. Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res. 2011;26:1561–7. doi:10.1002/jbmr.356.

    Article  CAS  PubMed  Google Scholar 

  80. Butt DA, Mamdani M, Gomes T, et al. Risk of osteoporotic fractures with angiotensin ii receptor blockers versus angiotensin-converting enzyme inhibitors in hypertensive community-dwelling elderly. J Bone Miner Res. 2014;29:2483–8. doi:10.1002/jbmr.2271.

    Article  CAS  PubMed  Google Scholar 

  81. Lynn H, Kwok T, Wong SYS, et al. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone. 2006;38:584–8.

    Article  CAS  PubMed  Google Scholar 

  82. Kwok T, Leung J, Zhang YF, et al. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men? Osteoporos Int. 2012;23:2159–67. doi:10.1007/s00198-011-1831-7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Zhang Y-F, Qin L, Leung P-C, Kwok TCY. The effect of angiotensin-converting enzyme inhibitor use on bone loss in elderly Chinese. J Bone Miner Metab. 2012;30:666–73. doi:10.1007/s00774-012-0363-3.

    Article  CAS  PubMed  Google Scholar 

  84. Pérez-Castrillón JL, Silva JJ, Justo I, et al. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens. 2003;16:453–9.

    Article  PubMed  Google Scholar 

  85. Pérez-Castrillón JL, Justo I, Silva J, et al. Relationship between bone mineral density and angiotensin converting enzyme polymorphism in hypertensive postmenopausal women. Am J Hypertens. 2003;16:233–5.

    Article  PubMed  Google Scholar 

  86. Beavan S, Horner A, Bord S, et al. Colocalization of glucocorticoid and mineralocorticoid receptors in human bone. J Bone Miner Res. 2001;16:1496–504.

    Article  CAS  PubMed  Google Scholar 

  87. Fumoto T, Ishii K-A, Ito M, et al. Mineralocorticoid receptor function in bone metabolism and its role in glucocorticoid-induced osteopenia. Biochem Biophys Res Commun. 2014;447:407–12. doi:10.1016/j.bbrc.2014.03.149.

    Article  CAS  PubMed  Google Scholar 

  88. Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol. 2008;31:153–8. doi:10.1002/clc.20324.

    Article  PubMed  Google Scholar 

  89. Grauballe MCB, Bentzen BH, Björnsson M, et al. The effect of spironolactone on experimental periodontitis in rats. J Periodontal Res. 2005;40:212–7.

    Article  CAS  PubMed  Google Scholar 

  90. Carbone LD, Cross JD, Raza SH, et al. Fracture risk in men with congestive heart failure risk reduction with spironolactone. J Am Coll Cardiol. 2008;52:135–8. doi:10.1016/j.jacc.2008.03.039.

    Article  PubMed  Google Scholar 

  91. Moghetti P, Castello R, Zamberlan N, et al. Spironolactone, but not flutamide, administration prevents bone loss in hyperandrogenic women treated with gonadotropin-releasing hormone agonist. J Clin Endocrinol Metab. 1998;84:1250–4.

    Google Scholar 

  92. Prezelj J, Kocijancic A. Antiandrogen treatment with spironolactone and linestrenol decreases bone mineral density in eumenorrhoeic women with androgen excess. Horm Metab Res. 1994;26:46–8.

    Article  CAS  PubMed  Google Scholar 

  93. Gregoriou O, Bakas P, Konidaris S, et al. The effect of combined oral contraception with or without spironolactone on bone mineral density of hyperandrogenic women. Gynecol Endocrinol. 2000;14:369–73.

    Article  CAS  PubMed  Google Scholar 

  94. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3:486–92.

    Article  CAS  PubMed  Google Scholar 

  95. Cohn JN, Anand IS, Latini R, et al. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial. Circulation. 2003;108:1306–9.

    Article  CAS  PubMed  Google Scholar 

  96. Gonçalves-Zillo TO, Pugliese LS, Sales VMT, et al. Increased bone loss and amount of osteoclasts in kinin B1 receptor knockout mice. J Clin Periodontol. 2013;40:653–60. doi:10.1111/jcpe.12097.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Conflict of interest

Lise Sofie Bislev, Tanja Sikjaer, Lars Rolighed and Lars Rejnmark declare that they have no conflict of interest.

Animal/Human Studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Because this article does not contain any studies with human participants or animals performed by any of the authors, informed consent was not obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Sofie Bislev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bislev, L.S., Sikjær, T., Rolighed, L. et al. Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health. Clinic Rev Bone Miner Metab 13, 194–205 (2015). https://doi.org/10.1007/s12018-015-9182-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-015-9182-0

Keywords

Navigation