Skip to main content

Advertisement

Log in

Skeletal Adaptation to Mechanical Loading

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Over the past 40 years, much has been learnt about how mechanical loading affects bone structure. The latest studies suggest that bone cells detect mechanical loads through integrin linkages at focal adhesions. Loading stimulates new bone formation, which is due in part to increased signaling through the Wnt/LRP5 pathway. Skeletal disuse both suppresses periosteal bone formation and increases bone resorption. The latter effect is due mostly to increased RANKL signaling that stimulates new osteoclasts. Increasing the rate or frequency by which loading is applied greatly improves bone tissue mechanosensitivity, possibly due to loading-induced extracellular fluid forces around osteocytes, which serve as mechanosensors. In addition, osteogenesis after mechanical loading can be improved substantially by inserting rest periods between loading events. This remedy works presumably because bone cells quickly become refractory to applied loads and require “rest” time to recover their mechanosensitivity. The molecular mechanism by which bone cells are desensitized to loading has not yet been identified. Skeletal disuse causes apoptosis of osteoblasts and osteocytes, which results in rapid bone loss. Bone loss following disuse is greatest in weight-bearing bones, particularly the distal bones in the legs, but almost non-existent in bones that do not bear weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892.

    Google Scholar 

  2. Roux W. Beitrage zur morphologie der funktionellen anpassung. Arch Ant Physiol Ant Abt. 1885;120–85.

  3. Von Meyer H. Die architektur der spongiosa. Arch Anat Physiol Wiss Med Reichert DuBois-Reymonds Arch. 1867;34:615–28.

  4. Murray PDF. Bones—a study of the development and structure of the vertebrate skeleton. Cambridge: Cambridge University Press; 1936.

    Google Scholar 

  5. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54.

    Article  PubMed  Google Scholar 

  6. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.

    Article  PubMed  CAS  Google Scholar 

  7. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.

    Article  PubMed  CAS  Google Scholar 

  8. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–7.

    Article  PubMed  CAS  Google Scholar 

  9. Rubin CT, Lanyon LE. Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol. 1982;101:187–211.

    PubMed  CAS  Google Scholar 

  10. Currey J. The mechanical adaptations of bones. Princeton University Press; 1984.

  11. Robling AG, Li J, Shultz KL, Beamer WG, Turner CH. Evidence for a skeletal mechanosensitivity gene on mouse chromosome 4. FASEB J. 2003;17:324–6.

    PubMed  CAS  Google Scholar 

  12. Riggs CM, Lanyon LE, Boyde A. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol. 1993;187:231–8.

    PubMed  CAS  Google Scholar 

  13. Ascenzi A, Bonucci E. The tensile properties of single osteons. Anat Rec. 1967;158:375–86.

    Article  PubMed  CAS  Google Scholar 

  14. Ascenzi A, Bonucci E. The compressive properties of single osteons. Anat Rec. 1968;161:377–91.

    Article  PubMed  CAS  Google Scholar 

  15. Takano Y, Turner CH, Owan I, et al. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. J Orthop Res. 1999;17:59–66.

    Article  PubMed  CAS  Google Scholar 

  16. Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123:27–31.

    PubMed  CAS  Google Scholar 

  17. Rodríguez JI, Palacios J, García-Alix A, Pastor I, Paniagua R. Effects of immobilization on fetal bone development. A morphometric study of newborns with congenital neuromuscular diseases with intrauterine onset. Calcif Tissue Int. 1988;42:335–9.

    Article  Google Scholar 

  18. Hert J, Lisková M, Landrgot B. Influence of the long-term, continuous bending on the bone. Folia Morphologica. 1969;17:389–99.

    PubMed  CAS  Google Scholar 

  19. Hert J, Pribylová E, Lisková M. Reaction of bone to mechanical stimuli. Part 3: Microstructure of compact bone of rabbit tibia after intermittent loading. Acta Anat. 1972;82:218–30.

    Article  PubMed  CAS  Google Scholar 

  20. Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. J Biomech. 1984;17:897–905.

    Article  PubMed  CAS  Google Scholar 

  21. Robling AG, Duijvelaar KM, Geevers JV, Ohashi N, Turner CH. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone. 2001;29:105–13.

    Article  PubMed  CAS  Google Scholar 

  22. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 1994;8:875–78.

    PubMed  CAS  Google Scholar 

  23. Hsieh Y-F, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res. 2001;16:918–24.

    Article  PubMed  CAS  Google Scholar 

  24. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism: low mechanical signals strengthen long bones. Nature 2001;412:603–4.

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka SM, Alam IM, Turner CH. Stochastic resonance in osteogenic response to mechanical loading. FASEB J. 2003;17:313–4.

    PubMed  CAS  Google Scholar 

  26. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone joint Surg. 1984;66-A:397–402.

    Google Scholar 

  27. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985;37:411–7.

    Article  PubMed  CAS  Google Scholar 

  28. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12:1480–5.

    Article  PubMed  CAS  Google Scholar 

  29. Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–6.

    Article  PubMed  Google Scholar 

  30. Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res. 2000;15:1596–602.

    Article  PubMed  CAS  Google Scholar 

  31. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204(Pt 19):3389–99.

    PubMed  CAS  Google Scholar 

  32. Jaworski ZFG, Liskova-Kiar M, Uhthoff HK. Effect of long-term immobilisation on the pattern of bone loss in older dogs. J Bone Joint Surg 1980;62-B:104–10.

    CAS  Google Scholar 

  33. Uhthoff HK, Jaworski ZFG. Bone loss in response to long-term immobilisation. J Bone Joint Surg. 1978;60-B:420–9.

    CAS  Google Scholar 

  34. Jaworski ZFG, Uhthoff HK. Reversibility of nontraumatic disuse osteoporosis during its active phase. Bone. 1986;7:431–9.

    Article  PubMed  CAS  Google Scholar 

  35. Turner CH. Site-specific skeletal effects of exercise: importance of interstitial fluid pressure. Bone. 1999;24:161–2.

    Article  PubMed  CAS  Google Scholar 

  36. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5:843–50.

    PubMed  CAS  Google Scholar 

  37. Parfitt AM. The physiological and clinical significance of bone histomorphometric data. In: Recker R, editor. Bone histomophometry: techniques and interpretation. Boca Raton, FL: CRC Press; 1983. p. 143–223.

    Google Scholar 

  38. Skerry TM, Bitensky L, Chayen J, Lanyon LE. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res. 1989;4:783–8.

    PubMed  CAS  Google Scholar 

  39. Lean JM, Mackay AG, Chow JW, Chambers TJ. Osteocytic expression of mRNA for c-fos IGF-I: an immediate early gene response to an osteogenic stimulus. Am J Physiol. 1996;270:E937–45.

    PubMed  CAS  Google Scholar 

  40. Mikuni-Takagaki Y, Suzuki Y, Kawase T, Saito S. Distinct responses of different populations of bone cells to mechanical stress. Endocrinology. 1996;137:2028–35.

    Article  PubMed  CAS  Google Scholar 

  41. Pavalko FM, Gallagher PJ, Gerard RL, Ponik SM, Jin Y, Norvell SM. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol. 2003;194:194–205.

    Article  PubMed  CAS  Google Scholar 

  42. Rubin J, Murphy T, Nanes MS, Fan X. Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol. 2000;278:C1126–32.

    CAS  Google Scholar 

  43. Rubin J, Murphy TC, Zhu L, Roy E, Nanes MS, Fan X. Mechanical strain differentially regulates endothelial nitric-oxide synthase and receptor activator of nuclear kappa B ligand expression via ERK1/2 MAPK. J Biol Chem. 2003;278:34018–25.

    Article  PubMed  CAS  Google Scholar 

  44. Bateman TA, Dunstan CR, Ferguson VL, Lacey DL, Ayers RA, Simske SJ. Osteoprotegerin mitigates tail suspension-induced osteopenia. Bone. 2000;26:443–9.

    Article  PubMed  CAS  Google Scholar 

  45. Jiang SD, Jiang LS, Dai LY. Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int. 2007;18:339–49.

    Article  PubMed  CAS  Google Scholar 

  46. Burr DB, Milgrom C, Fyhrie D, et al. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996;18:405–10.

    Article  PubMed  CAS  Google Scholar 

  47. Burger EH, Veldhuijzen JP. Influence of mechanical factors on bone formation, resorption and growth in vitro. In: Hall BK, editor. Bone. Volume 7: Bone Growth-B. Boca Raton, FL: CRC Press; 1993. p. 37–56.

    Google Scholar 

  48. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.

    Article  PubMed  CAS  Google Scholar 

  49. Hung CT, Allen FD, Pollack SR, Brighton CT. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech. 1996;29:1403–9.

    Article  PubMed  CAS  Google Scholar 

  50. Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol. 1990;143:100–4.

    Article  PubMed  CAS  Google Scholar 

  51. Rubin J, Biskobing D, Fan X, Rubin C, McLeod K, Taylor WR. Pressure regulated osteoclast formation and MCSF expression in marrow cultures. J Cell Physiol. 1997;170:81–7.

    Article  PubMed  CAS  Google Scholar 

  52. Forwood MR, Owan I, Takano Y, Turner CH. Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo. Am J Physiol. 1996;270:E419–23.

    PubMed  CAS  Google Scholar 

  53. Turner CH, Owan I, Alvey T, Hulman J, Hock JM. Recruitment and proliferative responses of osteoblasts after mechanical loading in vivo determined using sustained-release bromodeoxyuridine. Bone. 1998;22:463–9.

    Article  PubMed  CAS  Google Scholar 

  54. Chow JW, Wilson AJ, Chambers TJ, Fox SW. Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J Bone Miner Res. 1998;13:1760–7.

    Article  PubMed  CAS  Google Scholar 

  55. Boppart MD, Kimmel DB, Yee JA, Cullen DM. Time course of osteoblast appearance after in vivo mechanical loading. Bone. 1998;23:409–15.

    Article  PubMed  CAS  Google Scholar 

  56. Weinbaum S, Guo P, You L. A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes. Biorheology. 2001;38:119–42.

    PubMed  CAS  Google Scholar 

  57. Pavalko FM, Chen NX, Turner CH, et al. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton–integrin interactions. Am J Physiol. 1998;275:C1591–601.

    PubMed  CAS  Google Scholar 

  58. Leucht P, Kim JB, Currey JA, Brunski J, Helms JA. FAK-Mediated mechanotransduction in skeletal regeneration. PLoS ONE. 2007;2:e390.

    Article  PubMed  CAS  Google Scholar 

  59. Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol. 1996;271:E205–8.

    PubMed  CAS  Google Scholar 

  60. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. Osteopontin gene regulation by oscillary fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem. 2001;276:13365–71.

    Article  PubMed  CAS  Google Scholar 

  61. Chen NX, Ryder KD, Pavalko FM, et al. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol. 2000;278:C989–97.

    CAS  Google Scholar 

  62. Ryder KD, Duncan RL. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res. 2001;16:240–8.

    Article  PubMed  CAS  Google Scholar 

  63. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res. 1997;12:45–51.

    Article  PubMed  CAS  Google Scholar 

  64. Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 1995;9:1614–22.

    PubMed  CAS  Google Scholar 

  65. Forwood MR. Inducible cyclo-oxygenase. (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res. 1996;11:688–1693.

    Google Scholar 

  66. Turner CH, Takano Y, Owan I, Murrell GA. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol. 1996;270:E634–9.

    PubMed  CAS  Google Scholar 

  67. Rawlinson SC, el-Haj AJ, Minter SL, Tavares IA, Bennett A, Lanyon LE. Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptive bone remodeling? J Bone Miner Res. 1991;6:1345–51.

    PubMed  CAS  Google Scholar 

  68. Li XJ, Jee WS, Li YL, Patterson-Buckendahl P. Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone. 1990;11:353–64.

    Article  PubMed  CAS  Google Scholar 

  69. Machwate M, Harada S, Leu CT, et al. Prostaglandin receptor EP4 mediates the bone anabolic effects of PGE2. Mol Pharmacol. 2001;60:36–41.

    PubMed  CAS  Google Scholar 

  70. Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res. 2005;20:41–9.

    Article  PubMed  CAS  Google Scholar 

  71. Jørgensen NR, Geist ST, Civitelli R, Steinberg TH. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol. 1997;139:497–506.

    Article  PubMed  Google Scholar 

  72. Li J, Liu D, Ke HZ, Duncan RL, Turner CH. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem. 2005;280:42952–9.

    Article  PubMed  CAS  Google Scholar 

  73. Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH. Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest. 1993;91:1888–96.

    Article  PubMed  CAS  Google Scholar 

  74. Donahue HJ. Gap junctions and biophysical regulation of bone cell differentiation. Bone. 2000;26:417–22.

    Article  PubMed  CAS  Google Scholar 

  75. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  PubMed  CAS  Google Scholar 

  76. Little RD, Carulli JP, Del Mastro RG, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.

    Article  PubMed  CAS  Google Scholar 

  77. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75.

    Article  PubMed  CAS  Google Scholar 

  78. Sawakami K, Robling AG, Ai M, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281:23698–711.

    Article  PubMed  CAS  Google Scholar 

  79. Carvalho RS, Scott JE, Suga DM, Yen EH. Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. J Bone Miner Res. 1994;9:999–1011.

    Article  PubMed  CAS  Google Scholar 

  80. Ryder KD, Duncan RL. Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation. Calcif Tissue Int. 2000;67:241–6.

    Article  PubMed  CAS  Google Scholar 

  81. Chow JW, Fox S, Jagger CJ, Chambers TJ. Role for parathyroid hormone in mechanical responsiveness of rat bone. Am J Physiol. 1998;274:E146–54.

    PubMed  CAS  Google Scholar 

  82. Zaman G, Cheng MZ, Jessop HL, White R, Lanyon LE. Mechanical strain activates estrogen response elements in bone cells. Bone. 2000;27:233–39.

    Article  PubMed  CAS  Google Scholar 

  83. Jessop HL, Sjöberg M, Cheng MZ, Zaman G, Wheeler-Jones CPD, Lanyon LE. Mechanical strain and estrogen activate estrogen receptor α in bone cells. J Bone Miner Res. 2001;16:1045–55.

    Article  PubMed  CAS  Google Scholar 

  84. Lee K, Jessob H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature. 2003;424:389.

    Article  PubMed  CAS  Google Scholar 

  85. Saxon LK, Robling AG, Castillo AB, Mohan S, Turner CH. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Am J Physiol Endocrinol Metab. 2007;293:E484–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIAMS grant AR046530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, C.H. Skeletal Adaptation to Mechanical Loading. Clinic Rev Bone Miner Metab 5, 181–194 (2007). https://doi.org/10.1007/s12018-008-9010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-008-9010-x

Keywords

Navigation