Skip to main content

Advertisement

Log in

BRCA1 – Conductor of the Breast Stem Cell Orchestra: The Role of BRCA1 in Mammary Gland Development and Identification of Cell of Origin of BRCA1 Mutant Breast Cancer

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miki, Y., Swensen, J., Shattuck-Eidens, D., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266(5182), 66–71.

    Article  PubMed  CAS  Google Scholar 

  2. King, M. C., Marks, J. H., & Mandell, J. B. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science, 302(5645), 643–6.

    Article  PubMed  CAS  Google Scholar 

  3. Yang, Q., Sakurai, T., Mori, I., et al. (2001). Prognostic significance of BRCA1 expression in Japanese sporadic breast carcinomas. Cancer, 92, 54–60.

    Article  PubMed  CAS  Google Scholar 

  4. Turner, N., Tutt, A., & Ashworth, A. (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nature Reviews Cancer, 4(10), 814–9.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S., & Parvin, J. D. (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genetics, 19(3), 254–6.

    Article  PubMed  CAS  Google Scholar 

  6. Bochar, D. A., Wang, L., Beniya, H., et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell, 102(2), 257–65.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, H., Somasundaram, K., Peng, Y., et al. (1998). BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene, 16(13), 1713–21.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, Q., Zhang, H., Kajino, K., & Greene, M. I. (1998). BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene, 17(15), 1939–48.

    Article  PubMed  CAS  Google Scholar 

  9. Andrews, H. N., Mullan, P. B., McWilliams, S., et al. (2002). BRCA1 regulates the interferon gamma-mediated apoptotic response. Journal of Biological Chemistry, 277(29), 26225–32.

    Article  PubMed  CAS  Google Scholar 

  10. Mullan, P. B., Hosey, A. M., Buckley, N. E., et al. (2005). The 2,5 oligoadenylate synthetase/RNaseL pathway is a novel effector of BRCA1- and interferon-gamma-mediated apoptosis. Oncogene.

  11. Shakya, R., Reid, L. J., Reczek, C. R., et al. (2011). BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science, 334(6055), 525–8.

    Article  PubMed  CAS  Google Scholar 

  12. Chang, S., Wang, R. H., Akagi, K., et al. (2011). Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nature Medicine, 17(11), 1521.

    Article  CAS  Google Scholar 

  13. Foulkes, W. D. (2004). BRCA1 functions as a breast stem cell regulator. Journal of Medical Genetics, 41(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, S., Ginestier, C., Charafe-Jauffret, E., et al. (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1680–5.

    Article  PubMed  CAS  Google Scholar 

  15. Lim, E., Vaillant, F., Wu, D., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–13.

    Article  PubMed  CAS  Google Scholar 

  16. Proia, T. A., Keller, P. J., Gupta, P. B., et al. (2011). Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell, 8(2), 149–63.

    Article  PubMed  CAS  Google Scholar 

  17. Molyneux, G., Geyer, F. C., Magnay, F. A., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–17.

    Article  PubMed  CAS  Google Scholar 

  18. Sorlie, T., Perou, C. M., Tibshirani, R., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–74.

    Article  PubMed  CAS  Google Scholar 

  19. Behbod, F., & Rosen, J. M. (2005). Will cancer stem cells provide new therapeutic targets? Carcinogenesis, 26(4), 703–11.

    Article  PubMed  CAS  Google Scholar 

  20. Polyak, K. (2007). Breast cancer: origins and evolution. The Journal of Clinical Investigation, 117(11), 3155–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sorlie, T., Tibshirani, R., Parker, J., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–23.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, X., Holstege, H., van der Gulden, H., et al. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12111–6.

    Article  PubMed  CAS  Google Scholar 

  23. Poole, A. J., Li, Y., Kim, Y., Lin, S. C., Lee, W. H., & Lee, E. Y. (2006). Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science, 314(5804), 1467–70.

    Article  PubMed  CAS  Google Scholar 

  24. Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–70.

    Article  CAS  Google Scholar 

  25. Prat, A., Parker, J. S., Karginova, O., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68.

    Article  PubMed  Google Scholar 

  26. Herschkowitz, J. I., Simin, K., Weigman, V. J., et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biology, 8(5), R76.

    Article  PubMed  Google Scholar 

  27. Rebbeck, T. R., Lynch, H. T., Neuhausen, S. L., et al. (2002). Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. The New England Journal of Medicine, 346(21), 1616–22.

    Article  PubMed  Google Scholar 

  28. Narod, S. A., Brunet, J. S., Ghadirian, P., et al. (2000). Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet, 356(9245), 1876–81.

    Article  PubMed  CAS  Google Scholar 

  29. Huyton, T., Bates, P. A., Zhang, X., Sternberg, M. J., & Freemont, P. S. (2000). The BRCA1 C-terminal domain: structure and function. Mutation Research, 460(3–4), 319–32.

    Article  PubMed  CAS  Google Scholar 

  30. Yu, X., Chini, C. C., He, M., Mer, G., & Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science, 302(5645), 639–42.

    Article  PubMed  CAS  Google Scholar 

  31. Monteiro, A. N., August, A., & Hanafusa, H. (1996). Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13595–9.

    Article  PubMed  CAS  Google Scholar 

  32. Chapman, M. S., & Verma, I. M. (1996). Transcriptional activation by BRCA1. Nature, 382(6593), 678–9.

    Article  PubMed  CAS  Google Scholar 

  33. Xu, X., Weaver, Z., Linke, S. P., et al. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Molecular Cell, 3(3), 389–95.

    Article  PubMed  CAS  Google Scholar 

  34. Knudson, A. G., Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–3.

    Article  PubMed  Google Scholar 

  35. Fodde, R., & Smits, R. (2002). Cancer biology. A matter of dosage. Science, 298(5594), 761–3.

    Article  PubMed  CAS  Google Scholar 

  36. Bellacosa, A., Godwin, A. K., Peri, S., et al. (2010). Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer Prevention Research (Phila Pa), 3(1), 48–61.

    Article  CAS  Google Scholar 

  37. Farmer, H., McCabe, N., Lord, C. J., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–21.

    Article  PubMed  CAS  Google Scholar 

  38. Deng, C. X., & Brodie, S. G. (2000). Roles of BRCA1 and its interacting proteins. BioEssays, 22(8), 728–37.

    Article  PubMed  CAS  Google Scholar 

  39. Hohenstein, P., & Giles, R. H. (2003). BRCA1: a scaffold for p53 response? Trends in Genetics, 19(9), 489–94.

    Article  PubMed  CAS  Google Scholar 

  40. Martin, A.-M., Kanetsky, P., Amirimani, B., et al. (2003). Germline TP53 mutations in breast cancer families with multiple cancers: is TP53 a modifier if BRCA1? Journal of Medical Genetics, 40(4), e34.

    Article  PubMed  Google Scholar 

  41. Hakem, R., de la Pompa, J. L., Elia, A., Potter, J., & Mak, T. W. (1997). Partial rescue of Brca1 (5-6) early embryonic lethality by p53 or p21 null mutation. Nature Genetics, 16(3), 298–302.

    Article  PubMed  CAS  Google Scholar 

  42. Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N., & Foulkes, W. D. (2001). TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Research, 61(10), 4092–7.

    PubMed  CAS  Google Scholar 

  43. Hartman, A. R., & Ford, J. M. (2002). BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature Genetics, 32(1), 180–4.

    Article  PubMed  CAS  Google Scholar 

  44. Smart, C. E., Clarke, C., Brooks, K. M., et al. (2008). Targeted disruption of Brca1 in restricted compartments of the mouse mammary epithelia. Breast Cancer Research and Treatment, 112(2), 237–41.

    Article  PubMed  Google Scholar 

  45. Cicalese, A., Bonizzi, G., Pasi, C. E., et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell, 138(6), 1083–95.

    Article  PubMed  CAS  Google Scholar 

  46. Godar, S., Ince, T. A., Bell, G. W., et al. (2008). Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell, 134(1), 62–73.

    Article  PubMed  CAS  Google Scholar 

  47. Gusterson, B. A., Ross, D. T., Heath, V. J., & Stein, T. (2005). Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Research, 7(4), 143–8.

    Article  PubMed  CAS  Google Scholar 

  48. Chaffer, C. L., Brueckmann, I., Scheel, C., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7950–5.

    Article  PubMed  CAS  Google Scholar 

  49. Greaves, M. (2000). Cancer the evolutionary legacy. Oxford University Press.

  50. Marquis, S. T., Rajan, J. V., Wynshaw-Boris, A., et al. (1995). The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genetics, 11(1), 17–26.

    Article  PubMed  CAS  Google Scholar 

  51. Rajan, J. V., Wang, M., Marquis, S. T., & Chodosh, L. A. (1996). Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 13078–83.

    Article  PubMed  CAS  Google Scholar 

  52. Rajan, J. V., Marquis, S. T., Gardner, H. P., & Chodosh, L. A. (1997). Developmental expression of Brca2 colocalizes with Brca1 and is associated with proliferation and differentiation in multiple tissues. Developmental Biology, 184(2), 385–401.

    Article  PubMed  CAS  Google Scholar 

  53. Bernard-Gallon, D. J., De Latour, M. P., Sylvain, V., et al. (2001). Brca1 and Brca2 protein expression patterns in different tissues of murine origin. International Journal of Oncology, 18(2), 271–80.

    PubMed  CAS  Google Scholar 

  54. Xu, X., Wagner, K. U., Larson, D., et al. (1999). Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genetics, 22(1), 37–43.

    Article  PubMed  CAS  Google Scholar 

  55. Kubista, M., Rosner, M., Kubista, E., Bernaschek, G., & Hengstschlager, M. (2002). Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene, 21(31), 4747–56.

    Article  PubMed  CAS  Google Scholar 

  56. Furuta, S., Jiang, X., Gu, B., Cheng, E., Chen, P. L., & Lee, W. H. (2005). Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America.

  57. Hosey, A. M., Gorski, J. J., Murray, M. M., et al. (2007). Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 99(22), 1683–94.

    Article  PubMed  CAS  Google Scholar 

  58. Gorski, J. J., James, C. R., Quinn, J. E., et al. (2009). BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Research and Treatment .

  59. Kennedy, R. D., Gorski, J. J., Quinn, J. E., et al. (2005). BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. Cancer Research, 65(22), 10265–72.

    Article  PubMed  CAS  Google Scholar 

  60. Buckley, N. E., Conlon, S. J., Jirstrom, K., et al. (2011). The {Delta}Np63 Proteins Are Key Allies of BRCA1 in the Prevention of Basal-Like Breast Cancer. Cancer Research, 71(5), 1933–44.

    Article  PubMed  CAS  Google Scholar 

  61. Yalcin-Ozuysal, O., Fiche, M., Guitierrez, M., Wagner, K. U., Raffoul, W., & Brisken, C. (2010). Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death and Differentiation, 17(10), 1600–12.

    Article  PubMed  CAS  Google Scholar 

  62. Buono, K. D., Robinson, G. W., Martin, C., et al. (2006). The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Developmental Biology, 293(2), 565–80.

    Article  PubMed  CAS  Google Scholar 

  63. Raouf, A., Zhao, Y., To, K., et al. (2008). Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell, 3(1), 109–18.

    Article  PubMed  CAS  Google Scholar 

  64. Tkocz, D., Crawford, N. T., Buckley, N. E., et al. (2011). BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene.

  65. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D., & Werb, Z. (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell, 127(5), 1041–55.

    Article  PubMed  CAS  Google Scholar 

  66. Carroll, D. K., Carroll, J. S., Leong, C. O., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 8(6), 551–61.

    Article  PubMed  CAS  Google Scholar 

  67. Taddei, I., Deugnier, M. A., Faraldo, M. M., et al. (2008). Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature Cell Biology, 10(6), 716–22.

    Article  PubMed  CAS  Google Scholar 

  68. LaBarge, M. A., Nelson, C. M., Villadsen, R., et al. (2009). Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (Cambridge), 1(1), 70–9.

    Article  CAS  Google Scholar 

  69. Welcsh, P. L., Lee, M. K., Gonzalez-Hernandez, R. M., et al. (2002). BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7560–5.

    Article  PubMed  CAS  Google Scholar 

  70. Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–22.

    Article  PubMed  CAS  Google Scholar 

  71. Fialkow, P. J., Denman, A. M., Jacobson, R. J., & Lowenthal, M. N. (1978). Chronic myelocytic leukemia. Origin of some lymphocytes from leukemic stem cells. J Clin Invest, 62(4), 815–23.

    CAS  Google Scholar 

  72. Jamieson, C. H., Ailles, L. E., Dylla, S. J., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. The New England Journal of Medicine, 351(7), 657–67.

    Article  PubMed  CAS  Google Scholar 

  73. Greaves, M. (2010). Cancer stem cells: back to Darwin? Seminars in Cancer Biology, 20(2), 65–70.

    Article  PubMed  Google Scholar 

  74. Keller, P. J., Arendt, L. M., Skibinski, A., et al. (2011). Defining the cellular precursors to human breast cancer. Proceedings of the National Academy of Sciences of the United States of America.

  75. Ince, T. A., Richardson, A. L., Bell, G. W., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–70.

    Article  PubMed  CAS  Google Scholar 

  76. Hennessy, B. T., Gonzalez-Angulo, A. M., Stemke-Hale, K., et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Research, 69(10), 4116–24.

    Article  PubMed  CAS  Google Scholar 

  77. Prat, A., & Perou, C. M. (2009). Mammary development meets cancer genomics. Nature Medicine, 15(8), 842–4.

    Article  PubMed  CAS  Google Scholar 

  78. Lehmann, B. D., Bauer, J. A., Chen, X., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–67.

    Article  PubMed  CAS  Google Scholar 

Download references

The authors declare no potential conflicts of interest.

Funding

R and D Office, Northern Ireland and Breast Cancer Campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Mullan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, N.E., Mullan, P.B. BRCA1 – Conductor of the Breast Stem Cell Orchestra: The Role of BRCA1 in Mammary Gland Development and Identification of Cell of Origin of BRCA1 Mutant Breast Cancer. Stem Cell Rev and Rep 8, 982–993 (2012). https://doi.org/10.1007/s12015-012-9354-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9354-y

Keywords

Navigation