Skip to main content
Log in

Folic Acid Attenuates Vascular Endothelial Cell Injury Caused by Hypoxia via the Inhibition of ERK1/2/NOX4/ROS Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Coronary artery disease is a disease with high morbidity and mortality, in which vascular endothelial dysfunction plays an important role. Hypoxia leads to the inflammation and oxidative stress in endothelial cells, which results in the endothelial injury. The present study was designed to investigate the protective effect and mechanism of folic acid on hypoxia-induced injury in human umbilical vein endothelial cells (HUVEC). Cell counting Kit was used to detect cell survival rate, and apoptotic cells were detected by Hoechst 33258 staining. Intracellular reactive oxygen species (ROS) level was measured using dichloro-dihydro-fluorescein diacetate staining. Western blot was used to determine the protein expressions of extracellular signal protein kinase 1/2 (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2), NOX4 subunit of NAPDH and endothelial nitric oxide synthase (eNOS). Folic acid significantly increased the cell survival rate and decreased the apoptosis of HUVECs treated with folic acid compared with hypoxia-treated HUVEC. Folic acid also decreased ROS level, while it increased the nitrite content in HUVECs. In addition, folic acid decreased protein expressions of NOX4 and p-ERK1/2, while it increased the protein expression of eNOS in HUVECs. Furthermore, N-acetyl cysteine (NAC), the antioxidant, had similar effect on the cell survival rate and the apoptosis. In addition, DPI (NOX4 inhibitor) and U0126 (ERK1/2 inhibitor) rather than NAC decreased the protein expression of NOX4. NAC, DPI, and U0126 increased the protein expression of eNOS. Furthermore, U0126 rather than DPI and NAC decreased the protein expression of p-ERK1/2. Taken together, the results suggested that hypoxia decreased the cell survival rate and induced apoptosis via ERK1/2/NOX4/ROS pathway, which could be the target of folic acid in protecting the HUVECs from injury caused by hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, J. M., Yang, Z., Xu, M. G., Chen, L., Wang, Y., Su, C., & Tao, J. (2009). Berberine-induced decline in circulating CD31+/CD42− microparticles is associated with improvement of endothelial function in humans. European Journal of Pharmacology, 614, 77–83.

    Article  CAS  PubMed  Google Scholar 

  2. Ganz, P., & Hsue, P. Y. (2013). Endothelial dysfunction in coronary heart disease is more than a systemic process. European Heart Journal, 34, 2025–2027.

    Article  PubMed  Google Scholar 

  3. Gutierrez, E., Flammer, A. J., Lerman, L. O., Elizaga, J., Lerman, A., & Fernandez-Aviles, F. (2013). Endothelial dysfunction over the course of coronary artery disease. European Heart Journal, 34, 3175–3181.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Imamura, A., Murakami, R., Takahashi, R., Cheng, X. W., Numaguchi, Y., Murohara, T., & Okumura, K. (2010). Low folate levels may be an atherogenic factor regardless of homocysteine levels in young healthy nonsmokers. Metabolism, 59, 728–733.

    Article  CAS  PubMed  Google Scholar 

  5. Galkin, A., Higgs, A., & Moncada, S. (2007). Nitric oxide and hypoxia. Essays in Biochemistry, 43, 29–42.

    Article  CAS  PubMed  Google Scholar 

  6. Ho, J. J., Man, H. S., & Marsden, P. A. (2012). Nitric oxide signaling in hypoxia. Journal of Molecular Medicine (Berl), 90, 217–231.

    Article  CAS  Google Scholar 

  7. Kondoh, M., Ohga, N., Akiyama, K., Hida, Y., Maishi, N., Towfik, A. M., et al. (2013). Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One, 8, e80349.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moon, E. J., Sonveaux, P., Porporato, P. E., Danhier, P., Gallez, B., Batinic-Haberle, I., et al. (2010). NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proceedings of the National Academy Sciences of United States of America, 107, 20477–20482.

    Article  CAS  Google Scholar 

  9. Tang, F., Chan, E., Lu, M., Zhang, X., Dai, C., Mei, M., et al. (2015). Calpain-1 mediated disorder of pyrophosphate metabolism contributes to vascular calcification induced by oxLDL. PLoS One, 10, e0129128.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goettsch, C., Goettsch, W., Muller, G., Seebach, J., Schnittler, H. J., & Morawietz, H. (2009). Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochemical and Biophysical Research Communications, 380, 355–360.

    Article  CAS  PubMed  Google Scholar 

  11. Zoungas, S., Branley, P., Kerr, P. G., Ristevski, S., Muske, C., Demos, L., et al. (2004). Atherosclerosis and folic acid supplementation trial in chronic renal failure: baseline results. Nephrology (Carlton), 9, 130–141.

    Article  CAS  Google Scholar 

  12. Moat, S. J., Clarke, Z. L., Madhavan, A. K., Lewis, M. J., & Lang, D. (2006). Folic acid reverses endothelial dysfunction induced by inhibition of tetrahydrobiopterin biosynthesis. European Journal of Pharmacology, 530, 250–258.

    Article  CAS  PubMed  Google Scholar 

  13. Miao, Y., Zhang, Y., Lim, P. S., Kanjanapan, Y., Mori, T. A., Croft, K. D., et al. (2007). Folic acid prevents and partially reverses glucocorticoid-induced hypertension in the rat. American Journal of Hypertension, 20, 304–310.

    Article  CAS  PubMed  Google Scholar 

  14. Moat, S. J., Madhavan, A., Taylor, S. Y., Payne, N., Allen, R. H., Stabler, S. P., et al. (2006). High- but not low-dose folic acid improves endothelial function in coronary artery disease. European Journal of Clinical Investigation, 36, 850–859.

    Article  CAS  PubMed  Google Scholar 

  15. Eguchi, R., Suzuki, A., Miyakaze, S., Kaji, K., & Ohta, T. (2007). Hypoxia induces apoptosis of HUVECs in an in vitro capillary model by activating proapoptotic signal p38 through suppression of ERK1/2. Cellular Signalling, 19, 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, B., Zhao, Q., Ni, R., Tang, F., Shan, L., Cepinskas, I., et al. (2014). Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. Cardiovascular Diabetology, 13, 88.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kase, H., Hashikabe, Y., Uchida, K., Nakanishi, N., & Hattori, Y. (2005). Supplementation with tetrahydrobiopterin prevents the cardiovascular effects of angiotensin II-induced oxidative and nitrosative stress. Journal of Hypertension, 23, 1375–1382.

    Article  CAS  PubMed  Google Scholar 

  18. Antoniades, C., Shirodaria, C., Warrick, N., Cai, S., de Bono, J., Lee, J., et al. (2006). 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation, 114, 1193–1201.

    Article  CAS  PubMed  Google Scholar 

  19. Hung, M. W., Kravtsov, G. M., Lau, C. F., Poon, A. M., Tipoe, G. L., & Fung, M. L. (2013). Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. Journal of Pineal Research, 55, 247–256.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X., Deng, Y., Shang, J., Yang, X. H., Liu, K., Liu, H. G., & Xu, Y. J. (2013). Effect of NADPH oxidase inhibitor apocynin on the expression of hypoxia-induced factor-1 alpha and endothelin-1 in rat carotid body exposed to chronic intermittent hypoxia. Journal of Huazhong University of Science and Technology Medical Science, 33, 178–184.

    Article  CAS  Google Scholar 

  21. Yeo, J. E., Kim, J. H., & Kang, S. K. (2008). Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Cellular Physiology and Biochemistry, 21, 225–238.

    Article  CAS  PubMed  Google Scholar 

  22. Austen, S. K., Fassett, R. G., Geraghty, D. P., & Coombes, J. S. (2006). Folate supplementation fails to affect vascular function and carotid artery intima media thickness in cyclosporin A-treated renal transplant recipients. Clinical Nephrology, 66, 373–379.

    Article  CAS  PubMed  Google Scholar 

  23. Bleie, O., Semb, A. G., Grundt, H., Nordrehaug, J. E., Vollset, S. E., Ueland, P. M., et al. (2007). Homocysteine-lowering therapy does not affect inflammatory markers of atherosclerosis in patients with stable coronary artery disease. Journal of Internal Medicine, 262, 244–253.

    Article  CAS  PubMed  Google Scholar 

  24. Shirodaria, C., Antoniades, C., Lee, J., Jackson, C. E., Robson, M. D., Francis, J. M., et al. (2007). Global improvement of vascular function and redox state with low-dose folic acid: Implications for folate therapy in patients with coronary artery disease. Circulation, 115, 2262–2270.

    Article  CAS  PubMed  Google Scholar 

  25. Maier, W., Cosentino, F., Lutolf, R. B., Fleisch, M., Seiler, C., Hess, O. M., et al. (2000). Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. Journal of Cardiovascular Pharmacology, 35, 173–178.

    Article  CAS  PubMed  Google Scholar 

  26. Guo, H., Chi, J., Xing, Y., & Wang, P. (2009). Influence of folic acid on plasma homocysteine levels & arterial endothelial function in patients with unstable angina. Indian Journal of Medical Research, 129, 279–284.

    CAS  PubMed  Google Scholar 

  27. McCarty, M. F. (2004). Coping with endothelial superoxide: potential complementarity of arginine and high-dose folate. Medical Hypotheses, 63, 709–718.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Science and Technology Planning Project of Guangdong Province, China (2011B031800011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibiao Pan.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Lan, J., Xia, W. et al. Folic Acid Attenuates Vascular Endothelial Cell Injury Caused by Hypoxia via the Inhibition of ERK1/2/NOX4/ROS Pathway. Cell Biochem Biophys 74, 205–211 (2016). https://doi.org/10.1007/s12013-016-0723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0723-z

Keywords

Navigation