Skip to main content

Advertisement

Log in

Ecto-Mesenchymal Stem Cells from Facial Process: Potential for Muscle Regeneration

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ecto-mesenchymal stem cells (EMSCs) originate from the cranial neural crest and participate in the formation of tooth, salivary, and muscle in early development stage. The transplantation of EMSCs, a potential source of myoblast stem cell, might improve muscle regeneration. The purpose of this study was to explore whether EMSCs have the potential to differentiate and display a myogenic phenotype in vitro the in vitro. Here, we characterized the EMSCs isolated from the facial process, and p75 + EMSCs were collected by a FACS calibur flow cytometer. In vitro, p75 + EMSCs induced by DMSO can accumulate and fuse into multinucleated myotubes and further differentiate into the skeletal muscle cells in form of cell sheet. Functional myoblast phenotypes of p75 + EMSCs were found in vivo model of muscle injury. The remarkable ability of stem cells to regenerate skeletal muscle indicated their potential role in the cell therapy and tissue engineering of the skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vilquin, J. T., Catelain, C., & Vauchez, K. (2011). Cell therapy for muscular dystrophies: Advances and challenges. Current Opinion in Organ Transplantation, 16(6), 640–649.

    Article  CAS  PubMed  Google Scholar 

  2. Bhagavati, S. (2008). Stem cell based therapy for skeletal muscle diseases. Current Stem Cell Research & Therapy, 3(3), 219–228.

    Article  CAS  Google Scholar 

  3. Collins, C. A., Olsen, I., Zammit, P. S., et al. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122, 289–301.

    Article  CAS  PubMed  Google Scholar 

  4. Peault, B., Rudnicki, M., Torrente, Y., et al. (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Molecular Therapy, 15, 867–877.

    Article  CAS  PubMed  Google Scholar 

  5. De, B. C., Dell’Accio, F., Vandenabeele, F., et al. (2003). Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. Journal of Cell Biology, 160, 909–918.

    Article  Google Scholar 

  6. Chan, J., Waddington, S. N., O’Donoghue, K., et al. (2007). Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells, 25, 875–884.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, J., Duan, X., Zhang, H., et al. (2006). Isolation of neural crest-derived stem cells from rat embryonic mandibular processes. Biology of the Cell, 98(10), 567–575.

    Article  CAS  PubMed  Google Scholar 

  8. Degistirici, O., Jaquiery, C., Schönebeck, B., Siemonsmeier, J., Götz, W., Martin, I., et al. (2008). Defining properties of neural crest-derived progenitor cells from the apex of human developing tooth. Tissue Engineering Part A, 14(2), 317–330.

    Article  CAS  PubMed  Google Scholar 

  9. Davies, L. C., Locke, M., Webb, R. D., et al. (2010). A multipotent neural crest derived progenitor cell population is resident within the oral mucosa lamina propria. Stem Cells Development, 19(6), 819–830.

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacherjee, V., Mukhopadhyay, P., Singh, S., Johnson, C., Philipose, J. T., Warner, C. P., et al. (2007). Neural crest and mesoderm lineage-dependent gene expression in orofacial development. Differentiation, 75(5), 463–477.

    Article  CAS  PubMed  Google Scholar 

  11. Deng, M. J., Jin, Y., Shi, J. N., et al. (2004). Multilineage differentiation of ectomesenchymal cells isolated from the first branchial arch. Tissue Engineering, 10, 1597–1606.

    Article  CAS  PubMed  Google Scholar 

  12. Wen, X., Nie, X., Zhang, L., Liu, L., & Deng, M. (2011). Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro. Biochemistry Biophysics Research Communication, 409(3), 583–589.

    Article  CAS  Google Scholar 

  13. Qin, R. F., Mao, T. Q., Gu, X. M., Hu, K. J., Liu, Y. P., Chen, J. W., et al. (2007). Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene in vitro and in vivo. Molecular and Cellular Biochemistry, 302(1–2), 233–239.

    Article  CAS  PubMed  Google Scholar 

  14. Conboy, I. M., & Rando, T. A. (2005). Aging, stem cells and tissue regeneration: Lessons from muscle. Cell Cycle, 4, 407–410.

    Article  CAS  PubMed  Google Scholar 

  15. Nie, X., Zhang, Y. J., Tian, W. D., Jiang, M., Dong, R., Chen, J. W., et al. (2007). Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. International Journal of Oral and Maxillofacial Surgery, 36(1), 32–38.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, S., Shen, X., Zhang, R., et al. (2008). Development of rat antigen-presenting cells from pluripotent ecto-mesenchymal stem cells in vitro and in vivo. Molecular Immunology, 45(14), 3818–3826.

    Article  CAS  PubMed  Google Scholar 

  17. Deng, M., Shi, J., Smith, A. J., & Jin, Y. (2005). Effects of transforming growth factor beta1 (TGF beta-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system. Archives of Oral Biology, 50(11), 937–945.

    Article  CAS  PubMed  Google Scholar 

  18. Chai, Y., & Maxson, R. E, Jr. (2006). Recent advances in craniofacial morphogenesis. Developmental Dynamics, 235(9), 2353–2375.

    Article  PubMed  Google Scholar 

  19. Zhang, Y., Wang, S., Song, Y., Han, J., Chai, Y., & Chen, Y. (2003). Timing of odontogenic neural crest cell migration and tooth-forming capability in mice. Developmental Dynamics, 226(4), 713–718.

    Article  PubMed  Google Scholar 

  20. Jiang, H. B., Tian, W. D., Liu, L. K., & Xu, Y. (2008). In vitro odontoblast-like cell differentiation of cranial neural crest cells induced by fibroblast growth factor 8 and dentin non-collagen proteins. Cell Biology International, 32(6), 671–678.

    Article  CAS  PubMed  Google Scholar 

  21. Paino, F., Ricci, G., De Rosa, A., et al. (2010). Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater, 20, 295–305.

    CAS  PubMed  Google Scholar 

  22. Yan, Z., Lin, Y., Jiao, X., et al. (2006). Characterization of ectomesenchymal cells isolated from the first branchial arch during multilineage differentiation. Cells Tissues Organs, 183(3), 123–132.

    Article  PubMed  Google Scholar 

  23. Lin, Y., Yan, Z., Liu, L., et al. (2006). Proliferation and pluripotency potential of ectomesenchymal cells derived from first branchial arch. Cell Proliferation, 39(2), 79–92.

    Article  CAS  PubMed  Google Scholar 

  24. Gabillard, J. C., Sabin, N., & Paboeuf, G. (2010). In vitro characterization of proliferation and differentiation of trout satellite cells. Cell and Tissue Research, 342(3), 471–477.

    Article  PubMed  Google Scholar 

  25. Morosetti, R., Mirabella, M., Gliubizzi, C., et al. (2006). MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proceedings of the National Academy of Sciences of the United States of America, 103, 16995–17000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nishimura, M., Mikura, M., Hirasaka, K., Okumura, Y., Nikawa, T., Kawano, Y., et al. (2008). Effects of dimethyl sulphoxide and dexamethasone on mRNA expression of myogenesis- and muscle proteolytic system-related genes in mouse myoblastic C2C12 cells. Journal of Biochemistry, 144(6), 717–724.

    Article  CAS  PubMed  Google Scholar 

  27. Jeffery, W. R., Strickler, A. G., & Yamamoto, Y. (2004). Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature, 431, 696–699.

    Article  CAS  PubMed  Google Scholar 

  28. Montarras, D., Morgan, J., Collins, C., et al. (2005). Direct isolation of satellite cells for skeletal muscle regeneration. Science, 309, 2064–2067.

    Article  CAS  PubMed  Google Scholar 

  29. Lecourt, S., Marolleau, J. P., Fromigue, O., et al. (2010). Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro. Experimental Cell Research, 316(15), 2513–2526.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, J., Liu, L., Wei, J., et al. (2012). A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells. Artificial Organs, 36(1), 93–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from National Natural Science Foundation of China (Grant No. 31070863, 81271097) and from the Natural Science Foundation Project of Chongqing, China (Grants No. CSTC2010BB5161 and CSTC2011BA5013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujie Wen.

Additional information

Xin Nie and Yongjun Xing have contributed equally on this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Xing, Y., Deng, M. et al. Ecto-Mesenchymal Stem Cells from Facial Process: Potential for Muscle Regeneration. Cell Biochem Biophys 70, 615–622 (2014). https://doi.org/10.1007/s12013-014-9964-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9964-x

Keywords

Navigation