Skip to main content
Log in

Developmental Origin of the Posterior Pigmented Epithelium of Iris

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thumann, G. (2001). Development and cellular functions of the iris pigment epithelium. Survey of Ophthalmology, 45, 345–354.

    Article  CAS  PubMed  Google Scholar 

  2. Davis-Silberman, N., & Ashery-Padan, R. (2008). Iris development in vertebrates; genetic and molecular considerations. Brain Research, 1192, 17–28.

    Article  CAS  PubMed  Google Scholar 

  3. Moore, K. L. (1982). The developing human-clinical oriented embryology. Philadelphia: W.B. Saunders Company.

    Google Scholar 

  4. Larsen, W. J. (2002). Human embryology: health science Asia. Amsterdam: Elsevier Science.

    Google Scholar 

  5. Sweeney, L. J. (2003). Basic concepts in embryology. Beijing: Peking University Medical Press.

    Google Scholar 

  6. Sadler, T. W. (2004). Langman’s medical embryology. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  7. Dudek, R. W. (2011). Embryology. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  8. Bovolenta, P., Mallamaci, A., Briata, P., Corte, G., & Boncinelli, E. (1997). Implication of OTX2 in pigment epithelium determination and neural retina differentiation. Journal of Neuroscience, 17, 4243–4252.

    CAS  PubMed  Google Scholar 

  9. Taranova, O. V., Magness, S. T., Fagan, B. M., Wu, Y. Q., Surzenko, N., Hutton, S. R., et al. (2006). SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes & Development, 20, 1187–1202.

    Article  CAS  Google Scholar 

  10. Beby, F., Housset, M., Fossat, N., Le Greneur, C., Flamant, F., Godement, P., et al. (2010). Otx2 gene deletion in adult mouse retina induces rapid RPE dystrophy and slow photoreceptor degeneration. PLoS ONE, 5, e11673.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Omori, Y., Katoh, K., Sato, S., Muranishi, Y., Chaya, T., Onishi, A., et al. (2011). Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina. PLoS ONE, 6, e19685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Matsushima, D., Heavner, W., & Pevny, L. H. (2011). Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development, 138, 443–454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ma, W., Yan, R., Li, X., & Wang, S. (2009). Reprogramming retinal pigment epithelium to differentiate toward retinal neurons with Sox2. Stem Cells, 27, 1376–1387.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tsukiji, N., Nishihara, D., Yajima, I., Takeda, K., Shibahara, S., & Yamamoto, H. (2009). Mitf functions as an in ovo regulator for cell differentiation and proliferation during development of the chick RPE. Development Biology, 326, 335–346.

    Article  CAS  Google Scholar 

  15. Kim, J. S., Min, J., Recknagel, A. K., Riccio, M., & Butcher, J. T. (2011). Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. Anat Rec (Hoboken), 294, 1–10.

    Article  Google Scholar 

  16. Roy, D., Steyer, G. J., Gargesha, M., Stone, M. E., & Wilson, D. L. (2009). 3D cryo-imaging: a very high-resolution view of the whole mouse. Anat Rec (Hoboken), 292, 342–351.

    Article  Google Scholar 

  17. Takeda, K., Yokoyama, S., Yasumoto, K., Saito, H., Udono, T., Takahashi, K., et al. (2003). OTX2 regulates expression of DOPAchrome tautomerase in human retinal pigment epithelium. Biochemical and Biophysical Research Communications, 300, 908–914.

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Morales, J. R., Dolez, V., Rodrigo, I., Zaccarini, R., Leconte, L., Bovolenta, P., et al. (2003). OTX2 activates the molecular network underlying retina pigment epithelium differentiation. Journal of Biological Chemistry, 278, 21721–21731.

    Article  CAS  PubMed  Google Scholar 

  19. Sakami, S., Hisatomi, O., Sakakibara, S., Liu, J., Reh, T. A., & Tokunaga, F. (2005). Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina. Brain Research. Developmental Brain Research, 155, 49–59.

    Article  CAS  PubMed  Google Scholar 

  20. Westenskow, P., Piccolo, S., & Fuhrmann, S. (2009). Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development, 136, 2505–2510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Larsen, K. B., Lutterodt, M., Rath, M. F., & Moller, M. (2009). Expression of the homeobox genes PAX6, OTX2, and OTX1 in the early human fetal retina. International Journal of Developmental Neuroscience, 27, 485–492.

    Article  CAS  PubMed  Google Scholar 

  22. Uchikawa, M., Morishima, M., Saigou, Y., & Kondoh, H. (2010). The role of Sox2 in the regulation of eye development. Development Biology, 344, 484.

    Article  Google Scholar 

  23. Westenskow, P. D., McKean, J. B., Kubo, F., Nakagawa, S., & Fuhrmann, S. (2010). Ectopic Mitf in the embryonic chick retina by co-transfection of beta-catenin and Otx2. Investigative Ophthalmology & Visual Science, 51, 5328–5335.

    Article  Google Scholar 

  24. Masuda, T., & Esumi, N. (2010). SOX9, through Interaction with Microphthalmia-associated Transcription Factor (MITF) and OTX2, Regulates BEST1 Expression in the Retinal Pigment Epithelium. Journal of Biological Chemistry, 285, 26933–26944.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kosaka, M., Kodama, R., & Eguchi, G. (1998). In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Experimental Cell Research, 245, 245–251.

    Article  CAS  PubMed  Google Scholar 

  26. Albertine, K. H., & Dezawa, M. (2014). A new age of regenerative medicine: fusion of tissue engineering and stem cell research. Anat Rec (Hoboken), 297, 1–3.

    Article  Google Scholar 

  27. Haruta, M., Kosaka, M., Kanegae, Y., Saito, I., Inoue, T., Kageyama, R., et al. (2001). Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nature Neuroscience, 4, 1163–1164.

    Article  CAS  PubMed  Google Scholar 

  28. Akagi, T., Mandai, M., Ooto, S., Hirami, Y., Osakada, F., Kageyama, R., et al. (2004). Otx2 homeobox gene induces photoreceptor-specific phenotypes in cells derived from adult iris and ciliary tissue. Investigative Ophthalmology & Visual Science, 45, 4570–4575.

    Article  Google Scholar 

  29. Akagi, T., Akita, J., Haruta, M., Suzuki, T., Honda, Y., Inoue, T., et al. (2005). Iris-derived cells from adult rodents and primates adopt photoreceptor-specific phenotypes. Investigative Ophthalmology & Visual Science, 46, 3411–3419.

    Article  Google Scholar 

  30. Thumann, G., Schraermeyer, U., Bartz-Schmidt, K. U., & Heimann, K. (1997). Descemet’s membrane as membranous support in RPE/IPE transplantation. Current Eye Research, 16, 1236–1238.

    Article  CAS  PubMed  Google Scholar 

  31. Yip, H. K. (2014). Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken), 297, 137–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Ministry of Science and Technology, China (2006CB943700) and the National Natural Science Foundation of China (81170885). We thank the staff at the Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences of Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12013_2014_310_MOESM1_ESM.tif

Fig. S1. Images of human fetus at different developmental stages. 5 w (A), 6 w (B), 7 w (C). (▲): Fetal human eye. (TIFF 2803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xiong, K., Lu, L. et al. Developmental Origin of the Posterior Pigmented Epithelium of Iris. Cell Biochem Biophys 71, 1067–1076 (2015). https://doi.org/10.1007/s12013-014-0310-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0310-0

Keywords

Navigation