Skip to main content
Log in

Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na+K+-ATPase, Mg2+-ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

ACR:

Acrylamide

AlCl3 :

Aluminium chloride

AOPP:

Advanced oxidation protein product

CAT:

Catalase

DNPH:

Dinitrophenyl hydrazine

DTNB:

5,5′-Dithiobis-2-nitrobenzoic acid

EGL:

External granular layer

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

IGL:

Internal granular layer

MDA:

Malondialdehyde

ML:

Molecular layer

NPSH:

Non-protein thiol

PCL:

Purkinje cell layer

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid-reactive substances;

References

  1. Exley C, Burgess E, Day JP, Jeffery EH, Melethil S, Yokel RA (1996) Aluminum toxicokinetics. J Toxicol Environ Health 48:569–584

    Article  CAS  PubMed  Google Scholar 

  2. Karbouj R, Desloges I, Nortier P (2009) A simple pre-treatment of aluminium cookware to minimize aluminium transfer to food. Food Chem Toxicol 47:571–577

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez MA, Bernal CA, Mahieu S, Carrillo MC (2009) The interaction between the chronic exposure to aluminium and liver regeneration on bile flow and organicanion transport in rats. Biol Trace Elem Res 127:164–176

    Article  CAS  PubMed  Google Scholar 

  4. Roskams AJ, Connor JR (1990) Aluminum access to the brain: a role for transferring and its receptors. Proc Natl Acad Sci 87:9024–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mahieu S, Contini MC, Gonzalez M (2000) Aluminum toxicity: hematological effects. Toxicol Lett 111:235–242

    Article  CAS  PubMed  Google Scholar 

  6. Percy ME, Kruck TP, Pogue AI, Lukiw WJ (2011) Towards the prevention of potential aluminum toxic effects and effective treatment for Alzheimer’s diseases. J Inorg Biochem 105:1505–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oyanagi K (2005) The nature of the parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam and magnesium deficiency. Parkinsonism Relat Disord 1:17–23

    Article  Google Scholar 

  8. Bondy SC (2010) The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colomina MT, Roig JL, Torrente M, Vicens P, Domingo JL (2005) Concurrent exposure to aluminum and stress during pregnancy in rats: effects on postnatal development and behavior of the offspring. Neurotoxicol Teratol 27:565–574

    Article  CAS  PubMed  Google Scholar 

  10. Yousef MI, Kamel KI, El-Guendi MI, El-Demerdash FM (2007) An in vitro study on reproductive toxicity of aluminium chloride on rabbit sperm: the protective role of some antioxidants. Toxicology 239:213–223

    Article  CAS  PubMed  Google Scholar 

  11. Guo CH, Hsu GSW, Chuang CJ, Chen PC (2009) Aluminum accumulation induced testicular oxidative stress and altered selenium metabolism in mice. Environ Toxicol Pharmacol 27:176–181

    Article  CAS  PubMed  Google Scholar 

  12. CDC (2009) Fourth National Report on Human Exposure To Environmental Chemicals. Center for Disease Control and Prevention. U.S. Department of Health and Human Services, Atlanta, USA

    Google Scholar 

  13. Friedman M (2003) Chemistry, biochemistry and safety of acrylamide. A review. J Agric Food Chem 51:4504–4526

    Article  CAS  PubMed  Google Scholar 

  14. Tareke E, Ryberg P, Karsson P, Ericsson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  PubMed  Google Scholar 

  15. Sumner SC, Fennell TR, Moore TA, Chanas B, Gonzalez F, Ghanayem B (1999) Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol 12:1110–1116

    Article  CAS  PubMed  Google Scholar 

  16. Lopachin RM (2004) The changing view of acrylamide neurotoxicity. Neurotoxicology 25:617–630

    Article  CAS  PubMed  Google Scholar 

  17. Lopachin RM, Barber DS, He D, Das S (2006) Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol Sci 89:224–234

    Article  CAS  PubMed  Google Scholar 

  18. Allam AA, El-Ghareeb AW, Abdul-Hamid M, Bakery AE, Gad M, Sabri M (2010) Effect of prenatal and perinatal acrylamide on the biochemical and morphological changes in liver of developing albino rat. Arch Toxicol 84:129–141

    Article  CAS  PubMed  Google Scholar 

  19. Tiffany-Castiglioni E, Hong S, Qian Y, Tang Y, Donnelly KC (2006) In vitro models for assessing neurotoxicity of mixtures. NeuroToxicol 27:835–839

    Article  CAS  Google Scholar 

  20. Council of European Communities, Council instructions about the protection of Living animals used in scientific investigations. Official Journal of the European Communities (JO 86/609/CEE) 358 (1986) 1–18.

  21. Fishbeck KL, Rasmussen KM (1987) Effect of repeated cycles on maternal nutritional status, lactational performance and litter growth in ad libitum-fed and chronically food-restricted rats. J Nutr 117:1967–1975

    Google Scholar 

  22. Lowry OH, Rosebrugh NJ, Farr AL, Randall RJ (1951) Protein measuremernt with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  24. Kayali R, Cakatay U, Akcay T, Altug T (2006) Effect of alpha-lipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem Funct 24:79–85

    Article  CAS  PubMed  Google Scholar 

  25. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  26. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  PubMed  Google Scholar 

  27. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EMM, Rocha JBT (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. J Pharmacol Toxicol 88:119–125

    Article  CAS  Google Scholar 

  28. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  29. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  30. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  31. Ellman GL, Courtney KD, Andres V, Featherstone R (1961) A new and rapid colorimetric determination of acetyl cholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  32. Kawamoto EM, Munhoz CD, Glezer I, Bahia VS, Caramelli P, Nitrini R, Gorjao R, Curi R, Scavone C, Marcourakis T (2005) Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 26:857–864

    Article  CAS  PubMed  Google Scholar 

  33. Lu H, Yuan G, Yin Z, Dai S, Jia R, Xu J, Song X, Li L, Lv C (2014) Effects of subchronic exposure to lead acetate and cadmium chloride on rat’s bone: Ca and Pi contents, bone density and histopathological evaluation. Int J Clin Exp Pathol 7:640–647

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Allam A, El-Ghareeb AA, Abdul-Hamid M, Baikry A, Sabri MI (2011) Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: biochemical and morphological studies. Toxicol Ind Health 27:291–306

    Article  CAS  PubMed  Google Scholar 

  35. Yousef MI (2004) Aluminum induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology 199:47–57

    Article  CAS  PubMed  Google Scholar 

  36. Kaur A, Gill KD (2006) Possible peripheral markers for chronic aluminium toxicity in Wistar rats. Toxicol Ind Health 22:39–46

    Article  CAS  PubMed  Google Scholar 

  37. Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T (2015) Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res 40:767–776

    Article  PubMed  Google Scholar 

  38. Sharma P, Mishra KP (2006) Aluminum-induced maternal and developmental toxicity and oxidative stress in rat brain: response to combined administration of Tiron and glutathione. Reprod Toxicol 21:313–321

    Article  CAS  PubMed  Google Scholar 

  39. Sorgel F, Weissenbacher R, Kinzig-Schippers M, Hofmann A, Illauer M, Skott A (2002) Acrylamide: increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy 48:267–274

    Article  PubMed  Google Scholar 

  40. Takahashi M, Shibutani M, Inoue K, Fujimoto H, Hirose M, Nishikawa A (2008) Pathological assessment of the nervous and male reproductive systems of rat offspring exposed maternally to acrylamide during the gestation and lactation periods—a preliminary study. J Toxicol Sci 33:11–24

    Article  CAS  PubMed  Google Scholar 

  41. Samson FE, Nelson SR (2000) The aging brain, metals and oxygen free radicals. Cell Mol Biol 46:699–707

    CAS  PubMed  Google Scholar 

  42. Sies H, Stahl W, Sundkist AR (1992) Antioxidant functions of vitamins. Vitamins E and C, beta-caroten, and other carotenoides. Ann N Y Acad Sci 669:7–20

    Article  CAS  PubMed  Google Scholar 

  43. Catala A (2007) The ability of melatonin to counteract lipid peroxidation in biological membranes. Curr Mol Med 7:632–649

    Article  Google Scholar 

  44. Yumoto S, Nagai H, Matsuzaki H, Matsumura H, Tada W, Nagatsuma E, Kobayashi K (2001) Aluminium incorporation into the brain of rat fetuses and sucklings. Brain Res Bull 55:229–234

    Article  CAS  PubMed  Google Scholar 

  45. Yumoto S, Nagai H, Kobayashi K, Tamate A, Kakimi S, Matsuzaki H (2003) 26Al incorporation into the brain of suckling rats through maternal milk. J Inorg Biochem 97:155–160

    Article  CAS  PubMed  Google Scholar 

  46. Barber DS, Stevens S, LoPachin RM (2007) Proteomic analysis of rat striatal synaptosomes during acrylamide intoxication at a low dose rate. Toxicol Sci 100:156–167

    Article  CAS  PubMed  Google Scholar 

  47. Chen JH, Yang CH, Wang YS, et al. (2013) Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells. Food Chem Toxicol 51:446–452

    Article  CAS  PubMed  Google Scholar 

  48. Kraus-Friedman N, Bibes J, Muren H, Carafoli E (1982) Calcium uptake in isolated hepatic plasma membrane vesicles. Eur J Biochem 129:7–12

    Article  Google Scholar 

  49. Takahashi M, Shibutani M, Nakahigashi J, Sakaguchi N, Inoue K, Morikawa T (2009) Limited lactational transfer of acrylamide to rat offspring on maternal oral administration during the gestation and lactation periods. Arch Toxicol 83:785–793

    Article  CAS  PubMed  Google Scholar 

  50. Erecińska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  PubMed  Google Scholar 

  51. Siraj Mohiyuddin S, Rajeswara Reddy S, Ananda Kumar L, Jacob Doss P (2010) Acephate induced alterations in Mg2+ and Na+K+ ATPases of different brain regions of albino rats. Biasean 5:153–156

    Google Scholar 

  52. Dua R, Gill KD (2004) Effect of aluminum phosphide exposure on kinetic properties of cytochrome oxidase and mitochondrial energy metabolism in rat brain. Biochim Biophys Acta 1674:4–11

    Article  CAS  PubMed  Google Scholar 

  53. Gill KD, Dua R, Kumar V (2010) Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminum. Food Chem Toxicol 48:53–60

    Article  PubMed  Google Scholar 

  54. Yang WN, Han H, Hu XD, Feng GF, Qian YH (2013) The effects of perindopril on cognitive impairment induced by d-galactose and aluminum trichloride via inhibition of acetylcholinesterase activity and oxidative stress. Pharmacol Biochem Behav 114-115:31–36

    Article  CAS  PubMed  Google Scholar 

  55. Reyes AE, Perez DR, Alvarez A, Garrido J, Gentry MK, Doctor BP, Inestrosa NC (1997) A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun 232:652–655

    Article  CAS  PubMed  Google Scholar 

  56. Nehru B, Bhalla P, Garg A (2006) Evidence for centrophenoxine as a protective drug in aluminium induced behavioral and biochemical alteration in rat brain. Mol Cell Biochem 290:33–42

    Article  CAS  PubMed  Google Scholar 

  57. Julka D, Sandhir R, Gill KD (1995) Altered cholinergic metabolism in rat CNS following aluminum exposure: implications on learning performance. J Neurochem 65:2157–2164

    Article  CAS  PubMed  Google Scholar 

  58. Domingo JL (2006) Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimers Dis 10:331–341

    PubMed  Google Scholar 

  59. Colomina MT, Roig JL, Sanchez DJ, Domingo JL (2002) Influence of age on aluminum-induced neurobehavioral effects and morphological changes in rat brain. Neurotoxicology 23:775–781

    Article  CAS  PubMed  Google Scholar 

  60. Miu AC, Andreescu CE, Vasiu R, Olteanu AI (2003) A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. Int J Neurosci 113:1197–1211

    Article  PubMed  Google Scholar 

  61. Hasebe M, Matsumoto I, Imagawa T, Uehara M (2008) Effects of an anti-thyroid drug, methimazole, administration to rat dams on the cerebellar cortex development in their pups. Int J Dev Neurosci 26:409–414

    Article  CAS  PubMed  Google Scholar 

  62. Farwell AP, Dubord-Tomasettia SA, Pietrzykowskia AZ, Stachelekb SJ, Leonarda JL (2005) Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3,’,5′-triiodothyronine. Dev Brain Res 154:121–135

    Article  CAS  Google Scholar 

  63. Robbins S, Angell D (1976) Basic pathology, 2nd edn. W.B. Saunders Company, Philadelphia, London

    Google Scholar 

  64. Sherlock S, Doely J (1993) Diseases of the liver and biliary system, 9th edn. Blackwell Scientific Publication, Cambridge, London

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research in Tunisia (DGRST grants, LR/11ES-53).The authors are indebted to Mr. Menaa Assili and Mr. Chedli Tmar for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najiba Zeghal.

Ethics declarations

The general guidelines for the use and care of living animals in scientific investigations were followed (Council of European Communities: JO 86/609/CEE, 1986). The handling of the animals and the care and use of laboratory animals were approved by the Tunisian Ethical Committee of Sciences Faculty of Sfax.

Conflict of Interest Statement

The authors declare that they have no competing interests.

Additional information

Ibtissem Ben Amara and Naourez Ktari contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbel, I., Amara, I.B., Ktari, N. et al. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring. Biol Trace Elem Res 174, 335–346 (2016). https://doi.org/10.1007/s12011-016-0716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0716-1

Keywords

Navigation