Skip to main content

Advertisement

Log in

Relationships Between Blood Mg2+ and Energy Metabolites/Enzymes After Acute Exhaustive Swimming Exercise in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Magnesium (Mg) plays a central role in neuronal activity, cardiac excitability, neuromuscular transmission, muscular contraction, vasomotor tone, and blood pressure, all of which are significantly related to physical performance. To date, the available data about detection of blood total Mg (tMg; free-ionized, protein-bound, and anion-complex forms) are inconsistent, and there is limited information on blood free-ionized Mg (Mg2+) in relation to physical exercise. The aim of this study was to determine the biochemical changes related to energy metabolism after acute exhaustive swimming exercise (AESE) in rats in an attempt to correlate the role of blood Mg2+ with metabolites/enzymes related to energy production. After AESE, blood Mg2+, tMg, K+, partial pressure of carbon dioxide, lactate, total protein (T-PRO), high-density lipoprotein (HDL), creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alanine phosphatase (ALP), lactate dehydrogenase (LDH), and creatinine kinase (CK) were significantly increased, whereas pH, partial pressure of oxygen, oxygen saturation, the Mg2+/tMg and Ca2+/Mg2+ ratios, HCO3 , glucose, triglyceride (TG), and low-density lipoprotein (LDL) were significantly decreased. During AESE, lactate, T-PRO, albumin, AST, ALP, LDH, CK, CRE, BUN, and UA showed significant positive correlations with changes in blood Mg2+, while glucose, TG, and LDL correlated to Mg2+ in a negative manner. In conclusion, AESE induced increases in both blood Mg2+ and tMg, accompanied by changes in blood metabolites and enzymes related to energy metabolism due to increased metabolic demands and mechanical damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bohl CH, Volpe SL (2002) Magnesium and exercise. Crit Rev Food Sci Nutr 42:533–563

    Article  PubMed  CAS  Google Scholar 

  2. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294:1–26

    Article  PubMed  CAS  Google Scholar 

  3. Brilla LR, Gunther KB (1995) Effect of magnesium supplementation on exercise time to exhaustion. Med Exerc Nutr Health 4:230–233

    Google Scholar 

  4. Cinar V, Nizamlioglu M, Mogulkoc R, Baltaci AK (2007) Effects of magnesium supplementation on blood parameters of athletes at rest and after exercise. Biol Trace Elem Res 115(3):205–212

    Article  PubMed  CAS  Google Scholar 

  5. Cinar V, Mogulkoc R, Baltaci AK, Nizamlioglu M (2007) Effect of magnesium supplementation on some plasma elements in athletes at rest and exhaustion. Biol Trace Elem Res 119(2):97–102

    Article  PubMed  CAS  Google Scholar 

  6. Lukaski HC, Nielsen FH (2002) Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J Nutr 132(5):930–935

    PubMed  CAS  Google Scholar 

  7. Grubbs RD (2002) Intracellular magnesium and magnesium buffering. Biometals 15(3):251–259

    Article  PubMed  CAS  Google Scholar 

  8. Iotti S, Malucelli E (2008) In vivo assessment of Mg2+ in human brain and skeletal muscle by 31P-MRS. Magnes Res 21(3):157–162

    PubMed  CAS  Google Scholar 

  9. Baltaci AK, Uzun A, Kilic M, Mogulkoc R (2009) Effects of acute swimming exercise on some elements in rats. Biol Trace Elem Res 127(2):148–153

    Article  PubMed  CAS  Google Scholar 

  10. Kaptanoğlu B, Turgut G, Genç O, Enli Y, Karabulut I, Zencir M, Turgut S (2003) Effects of acute exercise on the levels of iron, magnesium, and uric acid in liver and spleen tissues. Biol Trace Elem Res 91(2):173–178

    Article  PubMed  Google Scholar 

  11. Laires MJ, Alves F (1991) Changes in plasma, erythrocyte, and urinary magnesium with prolonged swimming exercise. Magnes Res 4(2):119–122

    PubMed  CAS  Google Scholar 

  12. Haralambie G, Senser L (1980) Metabolic changes in man during long-distance swimming. Eur J Appl Physiol Occup Physiol 43(2):115–125

    Article  PubMed  CAS  Google Scholar 

  13. Brilla LR, Fredrickson JH, Lombardi VP (1989) Effect of hypomagnesemia and exercise on slowly exchanging pools of magnesium. Metabolism 38:797–800

    Article  PubMed  CAS  Google Scholar 

  14. Navas FJ, Córdova A (1996) Effect of magnesium supplementation and training on magnesium tissue distribution in rats. Biol Trace Elem Res 53(1–3):137–145

    Article  PubMed  CAS  Google Scholar 

  15. Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK, Mogulkoc R (2011) Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. J Physiol Biochem 67(4):511–517

    Article  PubMed  CAS  Google Scholar 

  16. Poleszak E, Wlaź P, Kedzierska E, Radziwon-Zaleska M, Pilc A, Fidecka S, Nowak G (2005) Effects of acute and chronic treatment with magnesium in the forced swim test in rats. Pharmacol Rep 57(5):654–658

    PubMed  CAS  Google Scholar 

  17. Cheng SM, Yang LL, Chen SH, Hsu MH, Chen IJ, Cheng FC (2010) Magnesium sulfate enhances exercise performance and manipulates dynamic changes in peripheral glucose utilization. Eur J Appl Physiol 108(2):363–369

    Article  PubMed  CAS  Google Scholar 

  18. Kim SJ, Lee SJ, Park HM, Lee SJ, Kim SJ, Kang HS (2010) Effect of acute high-intensive swimming exercise on blood electrolytes and metabolites. J Vet Clinic 27(3):262–267

    Google Scholar 

  19. Ben Rayana MC, Burnett RW, Covington AK, D'Orazio P, Fogh-Andersen N, Jacobs E, Külpmann WR, Kuwa K, Larsson L, Lewenstam A, Maas AH, Mager G, Naskalski JW, Okorodudu AO, Ritter C, St John A (2008) International Federation of Clinical Chemistry and Laboratory Medicine (IFCC); IFCC Scientific Division Committee on Point of Care Testing. IFCC guideline for sampling, measuring and reporting ionized magnesium in plasma. Clin Chem Lab Med 46:21–26

    Article  PubMed  CAS  Google Scholar 

  20. Johansson M, Whiss PA (2007) Weak relationship between ionized and total magnesium in serum of patients requiring magnesium status. Biol Trace Elem Res 115(1):13–21

    Article  PubMed  CAS  Google Scholar 

  21. Mazzaferro S, Barberi S, Scarda A, Pasquali M, Rubino F, D'Erasmo E (2002) Ionised and total serum magnesium in renal transplant patients. J Nephrol 15(3):275–280

    PubMed  CAS  Google Scholar 

  22. Mooren FC, Golf SW, Lechtermann A, Völker K (2005) Alterations of ionized Mg2+ in human blood after exercise. Life 77(11):1211–1225

    Article  CAS  Google Scholar 

  23. Rotstein A, Bar-Or O, Dlin R (1982) Haemoglobin, hematocrit and calculated plasma volume changes induced by a short, supramaximal task. Int J Sports Med 3(4):230–233

    Article  PubMed  CAS  Google Scholar 

  24. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:502–516

    Article  Google Scholar 

  25. Toyoda T, An D, Witczak CA, Koh HJ, Hirshman MF, Fujii N, Goodyear LJ (2011) Myo1c regulates glucose uptake in mouse skeletal muscle. J Biol Chem 286(6):4133–4440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Manabe Y, Miyatake S, Takagi M, Nakamura M, Okeda A, Nakano T, Hirshman MF, Goodyear LJ, Fujii NL (2012) Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PLoS One. doi:10.1371/journal.pone.0052592

    Google Scholar 

  27. Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36:279–291

    Article  PubMed  Google Scholar 

  28. Carvalho-Peixoto J, Alves RC, Cameron LC (2007) Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl Physiol Nutr Metab 32:1186–1190

    Article  PubMed  Google Scholar 

  29. Maguire ME, Cowan JA (2002) Magnesium chemistry and biochemistry. BioMetals 15:203–210

    Article  PubMed  CAS  Google Scholar 

  30. Niermann KJ, Olsen NJ, Park JH (2002) Magnesium abnormalities of skeletal muscle in dermatomyositis and juvenile dermatomyositis. Arthritis Rheum 46(2):475–488

    Article  PubMed  CAS  Google Scholar 

  31. Li HY, Quamme GA (1994) Effect of pH on intracellular free Mg2+ in isolated adult rat cardiomyocytes. Biochim Biophys Acta 1222(2):164–170

    Article  PubMed  CAS  Google Scholar 

  32. Kim SJ, Cho IG, Kang HS, Kim JS (2006) pH-dependent modulation of intracellular free magnesium ions with ion-selective electrodes in papillary muscle of guinea pig. J Vet Sci 7:31–36

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim SJ, Kang HS, Lee MY, Lee SJ, Seol JW, Park SY, Kim IS, Kim NS, Kim SZ, Kwak YG, Kim JS (2006) Ketamine-induced cardiac depression is associated with increase in [Mg2+]i and activation of p38 MAP kinase and ERK 1/2 in guinea pig. Biochem Biophys Res Commun 349:716–722

    Article  PubMed  CAS  Google Scholar 

  34. Brancaccio P, Lippi G, Maffulli N (2010) Biochemical markers of muscular damage. Clin Chem Lab Med 48(6):757–767

    Article  PubMed  CAS  Google Scholar 

  35. Mena P, Maynar M, Campillo JE (1996) Changes in plasma enzyme activities in professional racing cyclists. Br J Sports Med 30:122–124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Clarkson PM, Kearns AK, Rouzier P, Rubin R, Thompson PD (2006) Serum creatine kinase levels and renal function measures in exertional muscle damage. Med Sci Sports Exerc 38(4):623–627

    Article  PubMed  CAS  Google Scholar 

  37. Stendig-Lindberg G, Shapiro Y, Tepperberg M, Moran D (1999) Not only strenuous but also sustained moderate physical effort causes magnesium deficiency. Trace Elem Electroly 16:156–161

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by research funds of Chonbuk National University in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Zoo Kim.

Additional information

M. M. Rahman and S. J. Lee contributed equally to this study as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Lee, SJ., Mun, AR. et al. Relationships Between Blood Mg2+ and Energy Metabolites/Enzymes After Acute Exhaustive Swimming Exercise in Rats. Biol Trace Elem Res 161, 85–90 (2014). https://doi.org/10.1007/s12011-014-9983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9983-x

Keywords

Navigation