Skip to main content
Log in

Summary

Sixteen young adults were investigated before, immediately after and 24 h after swimming 5,200±618 m in 90 min. Mean pulse rate at the end of exercise was 151.3 min−1; skin and rectal temperature both slightly increased. Except for a marked leukocytosis, no changes were observed in other blood parameters (hematocrit, hemoglobin, erythrocytes). Serum enzyme activities showed (except for triosephosphate dehydrogenase) marked increases which in the case of creatine kinase and of malate dehydrogenase did not return to preexercise level on the next day. No hypoglycemia occurred in any of the subjects. Blood lactate increased to 4.2 mmol/l at the 15th min of exercise and at the end was still slightly above the resting value. Free fatty acids, free glycerol, 3-hydroxybutyrate, serum urea and uric acid rose markedly after swimming, whereas α-amino nitrogen, triglycerides, and serum magnesium significantly decreased.

The electrical excitability of the two investigated muscles (M. vastus med. quadr. and M. deltoides) showed opposite changes, which was ascribed to their different involvement during swimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian MJ, Singh M, Karpovich PV (1966) Energy cost of leg kick, arm troke, and whole crawl stroke. J Appl Physiol 21: 1763–1766

    Google Scholar 

  2. Berg A, Haralambie G (1978) Changes in serum creatine kinase and hexose phosphate isomerase activity with exercise duration. Eur J Appl Physiol 39: 191–201

    Google Scholar 

  3. Bergmeyer HU (1974) Methoden der enzymatischen Analyse, 3. Aufl. Verlag Chemie, Weinheim

    Google Scholar 

  4. Beutler E (1975) Red cell metabolism. A manul of biochemical methods, 2nd ed. Grune & Stratton, New York

    Google Scholar 

  5. Cazaux Y (1976) Modifications des bilans électrolytiques et enzymatiques au cours de l'entraÎnement de natation chez des nageurs de compétitions. Thèse Médécine, Nr 454. Toulouse

  6. Cerny FJ, Haralambie G (1975) Exercise intensity vs. duration as related to loss of muscle enzymes into serum. Abstr. 22nd Annual Meeting, Am. College of Sports. Med. Med Sci Sports 7: 65

    Google Scholar 

  7. Corbett JL, Johnson RH, Krebs HA, Walton JL, Williamson DH (1969) The effect of exercise on blood ketone body concentrations in athletes and untrained subjects. J Physiol 201: 83–84

    Google Scholar 

  8. Costill DL (1970) Metabolic responses during distance running. J Appl Physiol 28: 251

    Google Scholar 

  9. Dobrev D, Stefanova D, Georgiev C, Boitschev K (1969) VerÄnderungen des Gasaustausches und der biochemischen Blut- und Harnzusammensetzung von Teilnehmern am Marathonschwimmen über 30 km. Med Sport 9: 276–279

    Google Scholar 

  10. Eriksson B, Furberg B (1978) Swimming medicine, vol IV. University Park Press, Baltimore

    Google Scholar 

  11. Gandelsman AB (1973) Blutsystem und MuskeltÄtigkeit. In: Sportphysiologie. VEB Volk und Wissen, Berlin

    Google Scholar 

  12. Haralambie G (1973) Neuromuscular irritability and serum creatine phosphate kinase in athletes in training. Int Z Angew Physiol 31: 279–288

    Google Scholar 

  13. Haralambie G, Berg A (1976) Serum urea and amino nitrogen changes with exercise duration. Eur J Appl Physiol 36: 39–48

    Google Scholar 

  14. Haralambie G, Keul J, Theumert F (1976) Protein-, Eisen- und Kupfer-VerÄnderungen im Serum bei Schwimmern vor und nach Höhentraining. Eur J Appl Physiol 35: 21–31

    Google Scholar 

  15. Haralambie G (1978) Elektrolythaushalt und körperliche Belastung, II. Calcium. Sport Aktiv 2: 3–8

    Google Scholar 

  16. Haralambie G (1978) StoffwechselverÄnderungen nach langdauernder körperlicher Belastung beim Menschen. Wiss. Abt. Fresenius KG, Bad Homburg

  17. Haralambie G (1979) Biochemische BlutbildverÄnderungen nach einem 3000 m-Wettschwimmen. Leistungssport 9: 53–56

    Google Scholar 

  18. Haralambie G (1979) Magnesiumstoffwechsel bei körperlicher Belastung. Krankenhausarzt 52: 293–299

    Google Scholar 

  19. Hollmann W, Liesen H (1973) über die Bewertbarkeit des Lactats in der Leistungsdiagnostik. Sportarzt Sportmed 8: 175

    Google Scholar 

  20. Holmer J (1972) Oxygen uptake during swimming in man. J Appl Physiol 33: 502–509

    Google Scholar 

  21. Holmer J (1974) Energy cost of arm stroke, leg kick, and the whole stroke in competive swimming styles. Eur J Appl Physiol 33: 105–118

    Google Scholar 

  22. Houston ME (1978) Metabolic responses to exercise, with special reference to training and competition in swimming. In: Eriksson B, Furberg B (eds) Swimming medicine, vol IV. University Park Press, Baltimore, pp 207–232

    Google Scholar 

  23. Jakowlew NN (1977) Sportbiochemie. Barth, Leipzig

    Google Scholar 

  24. Keul J, Haralambie G, Arnold T, Schumann W (1974) Heart rate and energy-yielding substrates in blood during longlasting running. Eur J Appl Physiol 32: 279–289

    Google Scholar 

  25. Keul J, Haralambie G, Bruder M, Gottstein H-J (1978) The effect of weight lifting exercise on heart rate and metabolism in experienced weight lifters. Med Sci Sports 10: 13–15

    Google Scholar 

  26. Krestownikow AN (1953) Physiologie der Körperübungen. VEB Volk und Gesundheit, Berlin

    Google Scholar 

  27. Laborit H, Coirault R, Guiot G (1957) L'excitabilité neuromusculaire. Signification physiologique et clinique. Presse Méd 65: 571–573

    Google Scholar 

  28. Lang H, Würzburg U (1976) Pers. Comm.

  29. Lorentz K (1967) Mechanismus und SpezifitÄt der Indophenolreaktion zur Ammoniakbestimmung. Z Klin Chem Klin Biochem 5: 291–298

    Google Scholar 

  30. Mahler JL (1970) A new bacterial uricase for uric acid determination. Anal Biochem 38: 65–84

    Google Scholar 

  31. Maughan RH, Williams C, Campbell DM, Hepburn D (1978) Fat and carbohydrate metabolism during low intensity exercise: Effects of the availability of muscle glycogen. Eur J Appl Physiol 39: 7–16

    Google Scholar 

  32. Neumann G, Baasch G, Lorenz G, Schuster HG, Senger H, Hotz G, Taubmann W, Kaiser R, Scharschmidt F (1968) Untersuchung von Kreislauf- und Stoffwechselparametern wÄhrend und nach einer einstündigen Belastung mit einem Rennrad auf einem gebremsten Rollrad (Home-Trainer). Wiss Z DHfK (Leipzig) 10: 50–80

    Google Scholar 

  33. Oester YT, Licht S (1971) Routine electrodiagnosis. In: Licht S (ed) Electrodiagnosis and electromyography. Waverly-Press, Baltimore, pp 201–217

    Google Scholar 

  34. Rapp RD (1963) Determination of serum amino acids. Clin Chem 9: 27–30

    Google Scholar 

  35. Rennie MJ, Johnson RH (1974) Effects of an exercise diet program on metabolic changes with exercise in runners. J Appl Physiol 37: 821–825

    Google Scholar 

  36. Rennie MJ, Winder WW, Holloszy JO (1976) A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J 156: 647–655

    Google Scholar 

  37. Richterich R (1968) Klinische Chemie. Theorie und Praxis, 2. Aufl. Akademische Verlagsgesellschaft, Frankfurt

    Google Scholar 

  38. Rougier G, Babin R, Babin J-P (1966) Modifications intéressant le Potassium sérique lors de compétitions sportives. Méd Educ Phys Sport 40: 35–39

    Google Scholar 

  39. Rougier G, Babin JP (1975) A blood and urine study of heavy muscular work on ureic and uric metabolism in man. J Sports Med 15: 212–222

    Google Scholar 

  40. Salminen S, Konttinen A (1963) Effect of exercise on Na and K concentrations in human saliva and serum. J Appl Physiol 18: 812–814

    Google Scholar 

  41. Schwartz MK, Bethune VG, Bach DL, Woodbridge JE (1971) New assay for measuring phosphohexose isomerase activity. Clin Chem 17: 656–657

    Google Scholar 

  42. Szasz G, Gruber W, Bernt E (1976) Creatine kinase in serum. I. Determination of optimum reaction conditions. Clin Chem 22: 650–656

    Google Scholar 

  43. White J, Flashka H (1973) An automated procedure with use of ferrozine for assay of serum iron and total iron-binding capacity. Clin Chem 19: 526–528

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haralambie, G., Senser, L. Metabolic changes in man during long-distance swimming. Europ. J. Appl. Physiol. 43, 115–125 (1980). https://doi.org/10.1007/BF00422442

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422442

Key words

Navigation