Skip to main content
Log in

Arsenic Exposure in Drinking Water Alters the Dopamine System in the Brains of C57BL/6 Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although exposure to arsenic (As) induces neurotoxic changes, there is a lack of data regarding its specific effects on neurotransmission, particularly dopaminergic neurotransmission. In this study, the dopamine content and expression of tyrosine hydroxylase (TH) and dopamine receptors (DRs) were examined in the striatum and cerebral cortex of the mouse brain following the administration of As (1–100 mg/L NaAsO2 in drinking water). After 3 weeks, significantly decreased TH expression and dopamine content, both in the striatum and the cerebral cortex of mice treated with 100 mg/L As, were observed when compared with controls. Although DR expression was similar in the cerebral cortex of As-treated mice, DRD1 to DRD4 expression significantly increased in the striatum of 100 mg/L As-exposed mice. These data indicate that altered dopaminergic neurotransmission may contribute to As-induced neurotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kinniburgh DG, Kosmus W (2002) Arsenic contamination in groundwater: some analytical considerations. Talanta 58:165–180

    Article  CAS  PubMed  Google Scholar 

  2. Del Razo LM, Corona JC, García-Vargas G, Albores A, Cebrián ME (1993) Fluoride levels in well-water from a chronic arsenicism area of Northern Mexico. Environ Pollut 80:91–94

    Article  PubMed  Google Scholar 

  3. Dangleben NL, Skibola CF, Smith MT (2013) Arsenic immunotoxicity: a review. Environ Health 12:73

    Article  PubMed Central  PubMed  Google Scholar 

  4. Farzan SF, Karagas MR, Chen Y (2013) In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 272:384–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Axelson O, Dahlgren E, Jansson CD, Rehnlund SO (1978) Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter. Br J Ind Med 35:8–15

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS ONE 8:e73720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 21:132–147

    Article  Google Scholar 

  8. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, LoIacono NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112:1329–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–216

    Article  CAS  PubMed  Google Scholar 

  10. Rodríguez VM, Jiménez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    Article  PubMed  Google Scholar 

  11. Nagaraja TN, Desiraju T (1994) Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake. Hum Exp Toxicol 13:353–356

    Article  CAS  PubMed  Google Scholar 

  12. Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, Dufour L, Giordano M (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55:301–308

    Article  PubMed  Google Scholar 

  13. Bardullas U, Limón-Pacheco JH, Giordano M, Carrizales L, Mendoza-Trejo MS, Rodríguez VM (2009) Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicol Appl Pharmacol 239:169–177

    Article  CAS  PubMed  Google Scholar 

  14. Itoh T, Zhang YF, Murai S, Saito H, Nagahama H, Miyate H, Saito Y, Abe E (1990) The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice. Toxicol Lett 54:345–353

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez VM, Limón-Pacheco JH, Carrizales L, Mendoza-Trejo MS, Giordano M (2010) Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat. Neurotoxicol Teratol 32:640–647

    Article  PubMed  Google Scholar 

  16. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  17. Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81:105–113

    Article  CAS  PubMed  Google Scholar 

  18. Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Liu X, Zhao L, Hu S, Li S, Piao F (2013) Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of synthetase in mice brains. Neuroscience 241:52–58

    Article  CAS  PubMed  Google Scholar 

  20. Listos J, Baranowska-Bosiacka I, Talarek S, Listos P, Orzelska J, Fidecka S, Gutowska I, Kolasa A, Rybicka M, Chlubek D (2013) The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology 310:73–83

    Article  CAS  PubMed  Google Scholar 

  21. Zhang C, Li S, Sun Y, Dong W, Piao F, Piao Y, Liu S, Guan H, Yu S (2014) Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression. Toxicol Lett 228:260–269

    Article  CAS  PubMed  Google Scholar 

  22. Tripathi N, Kannan GM, Pant BP, Jaiswal DK, Malhotra PR, Flora SJ (1997) Arsenic-induced changes in certain neurotransmitter levels and their recoveries following chelation in rat whole brain. Toxicol Lett 92:201–208

    Article  CAS  PubMed  Google Scholar 

  23. Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adiposic, and aphagic. Cell 83:1197–1209

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Piao F, Li Y (2013) Protective effect of taurine on the decreased biogenic amine neurotransmitter levels in the brain of mice exposed to arsenic. Adv Exp Med Biol 776:277–287

    Article  CAS  PubMed  Google Scholar 

  25. Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341

    Article  CAS  PubMed  Google Scholar 

  26. Wolf ME, Roth RH (1990) Autoreceptor regulation of dopamine synthesis. Ann N Y Acad Sci 604:323–343

    Article  CAS  PubMed  Google Scholar 

  27. Joseph JD, Wang YM, Miles PR, Budygin EA, Picetti R, Gainetdinov RR, Caron MG, Wightman RM (2002) Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D(3) receptors. Neuroscience 112:39–49

    Article  CAS  PubMed  Google Scholar 

  28. Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(Suppl 3):S534–S547

    Article  PubMed  Google Scholar 

  29. Ball KT, Budreau D, Rebec GV (2003) Acute effects of 3,4-methylenedioxymethamphetamine on striatal single-unit activity and behavior in freely moving rats: differential involvement of dopamine D(1) and D(2) receptors. Brain Res 994:203–215

    Article  CAS  PubMed  Google Scholar 

  30. Wakamatsu M, Iwata S, Funakoshi T, Yoshimoto M (2008) Dopamine receptor agonists reverse behavioral abnormalities of alpha-synuclein transgenic mouse, a new model of Parkinson’s disease. J Neurosci Res 86:640–646

    Article  CAS  PubMed  Google Scholar 

  31. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48:1–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Bisa Research Grant of Keimyung University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Seo, S., Sung, K. et al. Arsenic Exposure in Drinking Water Alters the Dopamine System in the Brains of C57BL/6 Mice. Biol Trace Elem Res 162, 175–180 (2014). https://doi.org/10.1007/s12011-014-0145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0145-y

Keywords

Navigation