Skip to main content

Advertisement

Log in

Analysis of Immune-Relevant Genes Expressed in Spleen of Capra hircus Kids Fed with Trivalent Chromium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium is a biologically important element for humans and laboratory animals. Although the favorable effects of trivalent chromium on immune responses of studied animals have been well documented, the precise mechanisms by which the chromium acts on immune system is relatively poor studied. In this study, real-time qPCR technique was employed to evaluate the expression profiles of four immune-related genes (B2M, MHCA, MHCB, and Rap2A) in spleens of the domestic goats, Capra hircus, feeding on four different levels of supplemental chromium (0, 0.5, 1, and 1.5 mg/day) as chromium–methionine. The results showed that 1.5 mg/day of supplemental chromium significantly increased the expression of the four studied genes (P < 0.01). Since the studied genes play important roles in development, activation, and migration of lymphocytes, their increased expression seems to be an unknown mechanism by which chromium impose reinforcing effects on immune system. Therefore, supplemental chromium can be potentially used to improve immune responses especially in animals experiencing any type of stress such as invasion by a pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  1. Shrivastava R, Upreti R, Seth P, Chaturvedi U (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34(1):1–7

    Article  PubMed  CAS  Google Scholar 

  2. Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123(4):626–633

    PubMed  CAS  Google Scholar 

  3. De Flora S (2000) Threshold mechanisms and site specificity in chromium (VI) carcinogenesis. Carcinogenesis 21(4):533–541

    Article  PubMed  Google Scholar 

  4. Izzotti A, Cartiglia C, Balansky R, D’Agostini F, Longobardi M, De Flora S (2002) Selective induction of gene expression in rat lung by hexavalent chromium. Mol Carcinog 35(2):75–84

    Article  PubMed  CAS  Google Scholar 

  5. Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J, Rasco JF, Vincent JB (2011) Chromium is not an essential trace element for mammals: effects of a “low-chromium” diet. J Biol Inorg Chem 16:381–390

    Article  PubMed  Google Scholar 

  6. Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med (Praha) 52(1):1

    CAS  Google Scholar 

  7. Haldar S, Mondal S, Samanta S, Ghosh T (2009) Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against peste des petits ruminants in dwarf Bengal goats (Capra hircus). Animal 3(2):209–217

    Article  PubMed  CAS  Google Scholar 

  8. Swanson K, Harmon D, Jacques K, Larson B, Richards C, Bohnert D, Paton S (2000) Efficacy of chromium-yeast supplementation for growing beef steers. Anim Feed Sci Technol 86(1):95–105

    Article  CAS  Google Scholar 

  9. Yan X, Zhang W, Cheng J, Wang R, Kleemann DO, Zhu X, Jia Z (2008) Effects of chromium yeast on performance, insulin activity, and lipid metabolism in lambs fed different dietary protein levels. Asian Australas J Anim Sci 21(6):853

    CAS  Google Scholar 

  10. Anderson RA (1994) Stress effects on chromium nutrition of humans and farm animals. Nothingham University, Nothingam

    Google Scholar 

  11. Emami A, Zali A, Ganjkhanlou M, Akbari-Afjani A (2012) Nutrient digestibility, carcass characteristics and plasma metabolites in kids fed diets supplemented with chromium methionine. Online J Anim Feed Res 2(2):127–132

    Google Scholar 

  12. Pechova A, Podhorský A, Lokajova E, Pavlata L, Illek J (2002) Metabolic effects of chromium supplementation in dairy cows in the peripartal period. Acta Vet Brno 71(1):9–18

    Article  CAS  Google Scholar 

  13. Burton J, Mallard B, Mowat D (1993) Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. J Anim Sci 71(6):1532–1539

    PubMed  CAS  Google Scholar 

  14. Burton JL (1995) Supplemental chromium: its benefits to the bovine immune system. Anim Feed Sci Technol 53(2):117–133

    Article  CAS  Google Scholar 

  15. Burton JL, Mallard BA, Mowat DN (1994) Effects of supplemental chromium on antibody responses of newly weaned feedlot calves to immunization with infectious bovine rhinotracheitis and parainfluenza 3 virus. Can Vet Res 58(2):148

    CAS  Google Scholar 

  16. Chang GX, Mallard BA, Mowat D, Gallo G (1996) Effect of supplemental chromium on antibody responses of newly arrived feeder calves to vaccines and ovalbumin. Can J Vet Res 60(2):140

    PubMed  CAS  Google Scholar 

  17. Moonsie-Shageer S, Mowat D (1993) Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. J Anim Sci 71(1):232–238

    PubMed  CAS  Google Scholar 

  18. Borgs P, Mallard B (1998) Immune-endocrine interactions in agricultural species: chromium and its effect on health and performance. Domest Anim Endocrinol 15(5):431–438

    Article  PubMed  CAS  Google Scholar 

  19. Clancy HA, Sun H, Passantino L, Kluz T, Munoz A, Zavadil J, Costa M (2012) Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics 4(8):784–793

    Article  PubMed  CAS  Google Scholar 

  20. Maples NL, Bain L (2004) Trivalent chromium alters gene expression in the mummichog (Fundulus heteroclitus). Environ Toxicol Chem 23(3):626–631

    Article  PubMed  CAS  Google Scholar 

  21. Permenter MG, Lewis JA, Jackson DA (2011) Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line. PloS One 6(11):e27730

    Article  PubMed  CAS  Google Scholar 

  22. Ye J, Shi X (2001) Gene expression profile in response to chromium-induced cell stress in A549 cells. Mol Mech Met Toxic Carcinogen 34:189–197

    Google Scholar 

  23. Güssow D, Rein R, Ginjaar I, Hochstenbach F, Seemann G, Kottman A, Ploegh H (1987) The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J Immunol 139(9):3132–3138

    PubMed  Google Scholar 

  24. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17(2):40

    Article  Google Scholar 

  25. Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153(2):145–164

    Article  Google Scholar 

  26. Thornhill R, Gangestad SW, Miller R, Scheyd G, McCollough JK, Franklin M (2003) Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav Ecol 14(5):668–678

    Article  Google Scholar 

  27. McLeod SJ, Li AH, Lee RL, Burgess AE, Gold MR (2002) The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J Immunol 169(3):1365–1371

    PubMed  CAS  Google Scholar 

  28. McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR (2004) The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem 279(13):12009–12019

    Article  PubMed  CAS  Google Scholar 

  29. Paganini S, Guidetti GF, Catricalà S, Trionfini P, Panelli S, Balduini C, Torti M (2006) Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie 88(3):285–295

    Article  PubMed  CAS  Google Scholar 

  30. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat prot 1(2):581–585

    Article  CAS  Google Scholar 

  31. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl 2):W71–W74

    Article  PubMed  Google Scholar 

  32. Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols. Springer, pp 365–386

  33. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(suppl 2):W43–W46

    Article  PubMed  Google Scholar 

  34. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13(1):134

    Article  CAS  Google Scholar 

  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45

    Article  PubMed  CAS  Google Scholar 

  36. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862

    Article  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔC t method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  38. Wilkening S, Bader A (2004) Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model. J Biol Technol 15(2):107

    Google Scholar 

  39. Bohnsack J, Brown E (1986) The role of the spleen in resistance to infection. Ann Rev Med 37(1):49–59

    Article  PubMed  CAS  Google Scholar 

  40. Wijburg O, VAN ROOIJEN N (1997) Role of spleen macrophages in innate and acquired immune responses against mouse hepatitis virus strain A59. Immunology 92(2):252–258

    Article  PubMed  CAS  Google Scholar 

  41. Abbas AK, Lichtman AH, Pillai S (2005) Cellular and molecular immunology. Saunders, Philadelphia

    Google Scholar 

  42. Penn DJ (2002) The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108(1):1–21

    Article  Google Scholar 

  43. Kegley E, Spears J, Brown T (1997) Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J Anim Sci 75(7):1956–1964

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. M. Ganjkhanlou, Dr. A. Zali, and A. Emami for their helps with this study. This work was financially supported by the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Sadeghi.

Additional information

Mostafa Sadeghi and Mohammad Javad Najafpanah are joint first authors.

Appendix 1

Appendix 1

Table 2 Ingredient, chemical composition, and macro- and micromineral of basal standard diet fed to goat kids

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, M., Najafpanah, M.J. Analysis of Immune-Relevant Genes Expressed in Spleen of Capra hircus Kids Fed with Trivalent Chromium. Biol Trace Elem Res 156, 124–129 (2013). https://doi.org/10.1007/s12011-013-9828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9828-z

Keyword

Navigation