Skip to main content
Log in

In Vitro Effect of Copper Chloride Exposure on Reactive Oxygen Species Generation and Respiratory Chain Complex Activities of Mitochondria Isolated from Broiler Liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study is to examine if Cu2+ can act directly on mitochondria or indirectly by producing reactive oxygen species (ROS), isolated broiler hepatic mitochondria were exposed to different concentrations of Cu2+ (10, 30, 50 μM). Respiratory chain complex activities, ROS generation, respiratory control ratio (RCR) and mitochondrial membrane potential were investigated. Dose-dependent inhibition of respiratory chain complexes and induction of ROS were observed, which coincided with decreasing RCR both with glutamate + malate or succinate. Further investigation indicated that the membrane potential determined by rhodamine 123 release decreased after CuCl2 exposure at 30 and 50 μM. In addition, the effects of the antioxidants NAC (200 μM) and GSH (200 μM) were studied at 50 μM Cu2+. The results indicate that Cu can induce mitochondrial dysfunction in excessive dose and the effect of Cu2+ exposure on respiratory chain is not site-specific, and antioxidants can protect the mitochondrial function by reducing the formation of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  2. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  PubMed  CAS  Google Scholar 

  3. Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 2:435–444

    Google Scholar 

  4. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed  CAS  Google Scholar 

  5. Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505:364–368

    Article  PubMed  CAS  Google Scholar 

  6. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 32:2–10

    Google Scholar 

  7. Beinert H (1991) Copper in biological system. A report from the 6th Manziana Conference, September 23–27, 1990. J Inorg Biochem 44:173–218

    Article  PubMed  CAS  Google Scholar 

  8. Britton RS (1996) Metal-induced hepatotoxicity. Lipids 16:3–12

    CAS  Google Scholar 

  9. Chan PC, Peller OG, Kesner L (1982) Copper(II)-catalyzed lipid peroxidation in liposomes and erythrocyte membranes. Lipids 17:331–337

    Article  PubMed  CAS  Google Scholar 

  10. Al-Nasser IA (2000) Cadmium hepatotoxicity and alterations of the mitochondrial function. Clin Toxicol 38:407–413

    Article  CAS  Google Scholar 

  11. Rauen U, Petrat F, Sustmann R, de Groot H (2004) Iron-induced mitochondrial permeabiltiy transition in cultured hepatocytes. J Hepatol 40:607–615

    Article  PubMed  CAS  Google Scholar 

  12. Xiang LX, Shao JZ (2003) Role of intracellular Ca2+, reactive oxygen species, mitochondria transmembrane potential, and antioxidant enzymes in heavy metal-induced apoptosis in fish cells. Bull Environ Contan Toxicol 71:114–122

    Article  CAS  Google Scholar 

  13. Pourahmad J, O’Brien PJ (2000) A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 143:263–273

    Article  PubMed  CAS  Google Scholar 

  14. Zhao M, Antunes F, Eaton JW, Brunk UT (2003) Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eru J Biochem 270:3778–3786

    Article  CAS  Google Scholar 

  15. Krumschnabel G, Manzl C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209:62–73

    Article  PubMed  CAS  Google Scholar 

  16. Garcia N, Martinez-Abundis E, Pavon N, Correa F, Chavez E (2007) Copper induces permeability transition through its interaction with the adenine nucleotide translocase. Cell Biol Int 31:893–899

    Article  PubMed  CAS  Google Scholar 

  17. Tang Z, Iqbal M, Cawthon D (2002) Heart and breast muscle mitochondrial dysfunction in pulmonary hypertension syndrome in broilers (Gallus domesticus). Comp Biochem Physiol A 3:527–540

    Google Scholar 

  18. Bradford HF, Dodd RR (1977) Convulsions and activation of epileptic foci induced by monosodium glutamate and related compounds. Biochem Pharmacol 26:253–254

    Article  PubMed  CAS  Google Scholar 

  19. Zhang SR, Fu JL, Zhou ZC (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complex activities of mitochondria isolated from rat brain. Toxicol 18:71–77

    Google Scholar 

  20. Young TA, Cunningham CC, Bailey SM (2002) Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria:studies using myxothiazol. Arch Biochem Biophys 405:65–72

    Article  PubMed  CAS  Google Scholar 

  21. Emaus RK, Grunwald R, Lemaster JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria:spectral and metabolic properties. Biochem Biophys Acta 850:436–448

    Article  PubMed  CAS  Google Scholar 

  22. Arciello M, Rotilio G, Rossi L (2005) Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage. Biochem Biophys Res Commun 327:454–459

    Article  PubMed  CAS  Google Scholar 

  23. Freeman BA, Crapo JD (1982) Biology of disease-free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  24. Raha S, Robinson BH (2001) Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 106:62–70

    Article  PubMed  CAS  Google Scholar 

  25. Belyaeva EA, Glazunov VV, Korotkov SM (2004) Cd2+-promoted mitochondrial permeability transition: a comparison with other heavy metals. Acta Biochem Pol 51:545–551

    CAS  Google Scholar 

  26. Prohaska JR, Bailey WR, Lear PM (1995) Copper deficiency alters rat peptidylglycine α-amidating monooxygenase activity. J Nutr 125:1447–1454

    PubMed  CAS  Google Scholar 

  27. Hawk SN, Lanoue L, Keen CL, Kwik-Uribe CL, Rucker RB, Uriu-Adams JY (2003) Copper deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol Reprod 68:896–903

    Article  PubMed  CAS  Google Scholar 

  28. Lynch SM, Frei B, Morrow JD, Robert LJ, Xu A, Jackson T, Reyna R, Klevay LM, Vita JA, Keaney JF (1997) Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol 17:2975–2981

    Article  PubMed  CAS  Google Scholar 

  29. Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. update FEBS Lett 307:108–112

    Article  CAS  Google Scholar 

  30. Saris NE, Skulskii IA (1991) Interaction of Cu+ with mitochondria. Acta Chem Scand 45:1042–1046

    Article  PubMed  CAS  Google Scholar 

  31. Sokol RJ, Devereaux MW, O’Brien K, Khandwala RA, Loehr JP (1993) Abnormal hepatic mitochondrial respiration and cytochrome c oxidase activity in rats with long-term copper overload. Gastroenterology 105:178–187

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant NO. 30871900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Tang.

Additional information

Rongsheng Su, Rongmei Wang, Shining Guo and Huabin Cao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, R., Wang, R., Guo, S. et al. In Vitro Effect of Copper Chloride Exposure on Reactive Oxygen Species Generation and Respiratory Chain Complex Activities of Mitochondria Isolated from Broiler Liver. Biol Trace Elem Res 144, 668–677 (2011). https://doi.org/10.1007/s12011-011-9039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9039-4

Keywords

Navigation