Skip to main content
Log in

Phospholipase A1-Catalysed Synthesis of Docosahexaenoic Acid-Enriched Phosphatidylcholine in Reverse Micelles System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phosphatidylcholine enriched with docosahexaenoic acid (DHA) was successfully produced by phospholipase A1-catalysed acidolysis. Reverse micelles were firstly selected as the reaction system to avoid the process of immobilization and to ensure the efficient catalysis of phospholipase A1. Parameters were optimized for a high incorporation of phosphatidylcholine enriched with DHA (DHA-PC). A response-surface design with four factors, including the water content, enzyme loading, pH and substrate-mass ratio were used to evaluate the influence of the major factors and to predict the optimal reaction conditions. The results indicated that the optimal reaction conditions for the production of DHA-PC were a water content of 0.4%, an enzyme loading of 40%, pH 6.92 and a substrate-mass ratio of 2.13. Under these optimized conditions, 20.90% of DHA content in DHA-PC was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106, 2747–2757.

    Article  Google Scholar 

  2. Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21, 495–505.

    Article  CAS  Google Scholar 

  3. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., Aggarwal, N., & Schneider, J. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60, 940–946.

    Article  Google Scholar 

  4. Das, U. N. (2008). Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer’s disease—but how and why? Prostaglandins, Leukotrienes and Essential Fatty Acids, 78, 11–19.

    Article  CAS  Google Scholar 

  5. Ren, L. J., Zhuang, X. Y., Chen, S. L., Ji, X. J., & Huang, H. (2015). Introduction of ω-3 Desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Agricultural and Food Chemistry, 63, 9770–9776.

    Article  CAS  Google Scholar 

  6. Galli, C., Sirtori, C. R., Mosconi, C., Medini, L., Gianfranceschi, G., Vaccarino, V., & Scolastico, C. (1992). Prolonged retention of doubly labeled phosphatidylcholine in human plasma and erythrocytes after oral administration. Lipids, 27, 1005–1012.

    Article  CAS  Google Scholar 

  7. Ikeda, I., Sasaki, E., Yasunami, H., Nomiyama, S., Nakayama, M., Sugano, M., Imaizumi, K., & Yazawa, K. (1995). Digestion and lymphatic transport of eicosapentaenoic and docosahexaenoic acids given in the form of triacylglycerol, free acid and ethyl ester in rats. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1259, 297–304.

    Article  Google Scholar 

  8. Dyerberg, J., Madsen, P., Møller, J. M., Aardestrup, I., & Schmidt, E. B. (2010). Bioavailability of marine n-3 fatty acid formulations. Prostaglandins, Leukotrienes and Essential Fatty Acids, 83, 137–141.

    Article  CAS  Google Scholar 

  9. Schuchardt, J. P., & Hahn, A. (2013). Bioavailability of long-chain omega-3 fatty acids. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 89, 1–8.

    Article  CAS  Google Scholar 

  10. Bhattacharya, S., & Biswas, J. (2009). Understanding membranes through the molecular design of lipids. Langmuir, 26, 4642–4654.

    Article  Google Scholar 

  11. Kidd, P., & Head, K. (2005). A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos®). Alternative Medicine Review, 10, 193–203.

    Google Scholar 

  12. Reddy, J., Vijeeta, T., Karuna, M., Rao, B., & Prasad, R. (2005). Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. Journal of the American Oil Chemists’ Society, 82, 727–730.

    Article  CAS  Google Scholar 

  13. Bi, Y. H., Duan, Z. Q., Li, X. Q., Wang, Z. Y., & Zhao, X. R. (2015). Introducing Biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine. Journal of Agricultural and Food Chemistry, 63, 1558–1561.

    Article  CAS  Google Scholar 

  14. Rosseto, R., & Hajdu, J. (2014). Synthesis of phospholipids on a glyceric acid scaffold: design and preparation of phospholipase A2 specific substrates. Tetrahedron, 70, 3155–3165.

    Article  CAS  Google Scholar 

  15. Zhao, T. T., Kim, B. H., Garcia, H. S., Kim, Y., & Kim, I. H. (2014). Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid. Food Chemistry, 157, 132–140.

    Article  CAS  Google Scholar 

  16. Sakai, K., Okuyama, H., Yura, J., Takeyama, H., Shinagawa, N., Tsuruga, N., Kato, K., Miura, K., Kawase, K., & Tsujimura, T. (1992). Composition and turnover of phospholipids and neutral lipids in human breast cancer and reference tissues. Carcinogenesis, 13, 579–584.

    Article  CAS  Google Scholar 

  17. Pepping, J. (1999). Phosphatidylserine. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists, 56(2038), 2043–2034.

    Google Scholar 

  18. Hiratsuka, S., Ishihara, K., Kitagawa, T., Wada, S., & Yokogoshi, H. (2008). Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. Journal of Nutritional Science and Vitaminology, 54, 501–506.

    Article  CAS  Google Scholar 

  19. Hiratsuka, S., Koizumi, K., Ooba, T., & Yokogoshi, H. (2009). Effects of dietary docosahexaenoic acid connecting phospholipids on the learning ability and fatty acid composition of the brain. Journal of Nutritional Science and Vitaminology, 55, 374–380.

    Article  CAS  Google Scholar 

  20. Tang, X., Li, Z. J., Xu, J., Xue, Y., Li, J. Z., Wang, J. F., Yanagita, T., Xue, C. H., & Wang, Y. M. (2012). Short term effects of different omega-3 fatty acid formulation on lipid metabolism in mice fed high or low fat diet. Lipids in Health and Disease, 11, 70.

    Article  CAS  Google Scholar 

  21. Rossmeisl, M., Jilkova, Z. M., Kuda, O., Jelenik, T., Medrikova, D., Stankova, B., Kristinsson, B., Haraldsson, G. G., Svensen, H., & Stoknes, I. (2012). Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. PloS One, 7, e38834.

    Article  CAS  Google Scholar 

  22. Awada, M., Meynier, A., Soulage, C. O., Hadji, L., Géloën, A., Viau, M., Ribourg, L., Benoit, B., Debard, C., & Guichardant, M. (2013). N-3 PUFA added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice. Nutrition & Metabolism (London), 10, 23.

    Article  CAS  Google Scholar 

  23. Vigerust, N. F., Bjørndal, B., Bohov, P., Brattelid, T., Svardal, A., & Berge, R. K. (2012). Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-α. European Journal of Nutrition, 52, 1315–1325.

    Article  Google Scholar 

  24. Burri, L., Hoem, N., Banni, S., & Berge, K. (2012). Marine omega-3 phospholipids: metabolism and biological activities. International Journal of Molecular Sciences, 13, 15401–15419.

    Article  CAS  Google Scholar 

  25. Vikbjerg, A. F., Mu, H., & Xu, X. (2005). Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 36, 14–21.

    Article  CAS  Google Scholar 

  26. Kim, I. H., Garcia, H. S., & Hill Jr., C. G. (2010). Synthesis of structured phosphatidylcholine containing n-3 PUFA residues via acidolysis mediated by immobilized phospholipase A1. Journal of the American Oil Chemists’ Society, 87, 1293–1299.

    Article  CAS  Google Scholar 

  27. Lyberg, A. M., Adlercreutz, D., & Adlercreutz, P. (2005). Enzymatic and chemical synthesis of phosphatidylcholine regioisomers containing eicosapentaenoic acid or docosahexaenoic acid. European Journal of Lipid Science and Technology, 107, 279–290.

    Article  CAS  Google Scholar 

  28. Schmid, A., Dordick, J., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–268.

    Article  CAS  Google Scholar 

  29. Sharma, S., Yadav, N., Chowdhury, P. K., & Ganguli, A. K. (2015). Controlling the microstructure of reverse micelles and their templating effect on shaping nanostructures. The Journal of Physical Chemistry B, 119, 11295–11306.

    Article  CAS  Google Scholar 

  30. Hossen, M., & Hernandez, E. (2005). Enzyme-catalyzed synthesis of structured phospholipids with conjugated linoleic acid. European Journal of Lipid Science and Technology, 107, 730–736.

    Article  CAS  Google Scholar 

  31. Yamamoto, Y., Mizuta, E., Ito, M., Harata, M., Hiramoto, S., & Hara, S. (2014). Lipase-catalyzed preparation of phospholipids containing n-3 polyunsaturated fatty acids from soy phospholipids. Journal of Oleo Science, 63, 1275–1281.

    Article  CAS  Google Scholar 

  32. Hong, S. C., Park, K. M., Son, Y. H., Jung, H. S., Kim, K., Choi, S. J., & Chang, P. S. (2015). AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase. Food Chemistry, 179, 263–269.

    Article  CAS  Google Scholar 

  33. Chi, Z. Y., Hu, B., Liu, Y., Frear, C., Wen, Z. Y., & Chen, S. L. (2007). Production of ω-3 polyunsaturated fatty acids from cull potato using an algae culture process. Applied Biochemistry and Biotechnology, 137, 805–815.

    Google Scholar 

  34. Zhang, Y., Min, Q. S., Xu, J., Zhang, K., Chen, S. L., Wang, H. J., & Li, D. M. (2016). Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1. Electronic Journal of Biotechnology, 19, 56–60.

    Article  CAS  Google Scholar 

  35. Chen, W. X, Wang, H. J, Zhang, K., Gao, F., Chen, S. L., & Li, D. M. (2016). Physicochemical properties and storage stability of microencapsulated DHA-rich oil with different wall materials. Applied Biochemistry and Biotechnology, 1–14.

  36. Liu, B., Liu, J., Sun, P. P., Ma, X. N., Jiang, Y., & Chen, F. (2015). Sesamol enhances cell growth and the biosynthesis and accumulation of docosahexaenoic acid in the microalga Crypthecodinium cohnii. Journal of Agricultural and Food Chemistry, 63, 5640–5645.

    Article  CAS  Google Scholar 

  37. Heck, J. X., Flôres, S. H., Hertz, P. F., & Ayub, M. A. Z. (2005). Optimization of cellulase-free xylanase activity produced by Bacillus coagulans BL69 in solid-state cultivation. Process Biochemistry, 40, 107–112.

    Article  CAS  Google Scholar 

  38. Adlercreutz, D., Budde, H., & Wehtje, E. (2002). Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction. Biotechnology and Bioengineering, 78, 403–411.

    Article  CAS  Google Scholar 

  39. Egger, D., Wehtje, E., & Adlercreutz, P. (1997). Characterization and optimization of phospholipase A 2 catalyzed synthesis of phosphatidylcholine. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1343, 76–84.

    Article  CAS  Google Scholar 

  40. Hakoda, M., Shiragami, N., Enomoto, A., & Nakamura, K. (2003). Measurements of hydrodynamic diameter of AOT reverse micelles containing lipase in supercritical ethane and its enzymatic reaction. Bioprocess and Biosystems Engineering, 25, 243–247.

    Article  CAS  Google Scholar 

  41. Haraldsson, G. G., & Thorarensen, A. (1999). Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. Journal of the American Oil Chemists’ Society, 76, 1143–1149.

    Article  CAS  Google Scholar 

  42. Li, D. M., Qin, X. L., Wang, W. F., Li, Z. G., Yang, B., & Wang, Y. H. (2016). Synthesis of DHA/EPA-rich phosphatidylcholine by immobilized phospholipase A1: effect of water addition and vacuum condition. Bioprocess and Biosystems Engineering, 39, 1305–1314.

    Article  CAS  Google Scholar 

  43. Kim, I. H., Garcia, H. S., & Hill, C. G. (2007). Phospholipase a 1-catalyzed synthesis of phospholipids enriched in n−3 polyunsaturated fatty acid residues. Enzyme and Microbial Technology, 40, 1130–1135.

    Article  CAS  Google Scholar 

  44. Menger, F. M., & Yamada, K. (1979). Enzyme catalysis in water pools. Journal of the American Chemical Society, 101, 6731–6734.

    Article  CAS  Google Scholar 

  45. Petersen, S. B., Jonson, P. H., Fojan, P., Petersen, E. I., Petersen, M. T. N., Hansen, S., Ishak, R. J., & Hough, E. (1998). Protein engineering the surface of enzymes. Journal of Biotechnology, 66, 11–26.

    Article  CAS  Google Scholar 

  46. Kim, J., Lee, C. S., Oh, J., & Kim, B. G. (2001). Production of egg yolk lysolecithin with immobilized phospholipase A2. Enzyme and Microbial Technology, 29, 587–592.

    Article  CAS  Google Scholar 

  47. Xu, X. (2000). Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. European Journal of Lipid Science and Technology, 102, 287–303.

    Article  CAS  Google Scholar 

  48. Rosu, R., Yasui, M., Iwasaki, Y., & Yamane, T. (1999). Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. Journal of the American Oil Chemists’ Society, 76, 839–843.

    Article  CAS  Google Scholar 

  49. Virto, C., Svensson, I., & Adlercreutz, P. (1999). Enzymatic synthesis of lysophosphatidic acid and phosphatidic acid. Enzyme and Microbial Technology, 24, 651–658.

    Article  CAS  Google Scholar 

  50. Kim, J., & Kim, B. G. (2000). Lipase-catalyzed synthesis of lysophosphatidylcholine using organic cosolvent for in situ water activity control. Journal of the American Oil Chemists’ Society, 77, 791–797.

    Article  CAS  Google Scholar 

  51. Virto, C., & Adlercreutz, P. (2000). Lysophosphatidylcholine synthesis with Candida antarctica lipase B (Novozym 435). Enzyme and Microbial Technology, 26, 630–635.

    Article  CAS  Google Scholar 

  52. Park, C. W., Kwon, S. J., Han, J. J., & Rhee, J. S. (2000). Transesterification of phosphatidylcholine with eicosapentaenoic acid ethyl ester using phospholipase A2 in organic solvent. Biotechnology Letters, 22, 147–150.

    Article  CAS  Google Scholar 

  53. Peng, L., Xu, X., Mu, H., Høy, C. E., & Adler-Nissen, J. (2002). Production of structured phospholipids by lipase-catalyzed acidolysis: optimization using response surface methodology. Enzyme and Microbial Technology, 31, 523–532.

    Article  CAS  Google Scholar 

  54. Xi, X., Feng, X. M., Shi, N. R., Ma, X. X., Lin, H., & Han, Y. Q. (2016). Immobilized phospholipase A1-catalyzed acidolysis of phosphatidylcholine from Antarctic krill (Euphausia superba) for docosahexaenoic acid enrichment under supercritical conditions. Journal of Molecular Catalysis B: Enzymatic, 126, 46–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the International Cooperation Project (grant no. 2014DFA61040), the Youth Innovation Promotion Association CAS, and the Hi-Tech Research and Development Program (863) of China (grant no. 2014ARA021701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Guo, W., Gao, F. et al. Phospholipase A1-Catalysed Synthesis of Docosahexaenoic Acid-Enriched Phosphatidylcholine in Reverse Micelles System. Appl Biochem Biotechnol 182, 1037–1052 (2017). https://doi.org/10.1007/s12010-016-2379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2379-y

Keywords

Navigation