Skip to main content

Advertisement

Log in

Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases Against Herpes Simplex Virus Type 1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactoperoxidase is a milk hemoprotein that acts as a non-immunoglobulin protective protein and shows strong antimicrobial activity. Bovine milk contains about 15 and 7 times higher levels of lactoperoxidase than human colustrum and camel milk, respectively. Human, bovine, and camel lactoperoxidases (hLPO, bLPO, and cLPO, respectively) were purified as homogeneous samples with specific activities of 4.2, 61.3, and 8.7 u/mg, respectively. The optimal working pH was 7.5 (hLPO and bLPO) and 6.5 (cLPO), whereas the optimal working temperature for these proteins was 40 °C. The K m of hLPO, cLPO, and bLPO were 17, 16, and 19 mM, and their corresponding V max values were 2, 1.7, and 2.7 μmol/min ml. However, in the presence of H2O2, the K m values were 11 mM for hLPO and cLPO and 20 mM for bLPO, while the corresponding V max values were 1.17 for hLPO and 1.4 μmol/min ml for cLPO and bLPO. All three proteins were able to inhibit the herpes simplex virus type 1 (HSV-1) in Vero cell line model. The relative antiviral activities were proportional to the protein concentrations. The highest anti-HSV-1 activity was exhibited by bLPO that inhibited the HSV particles at a concentration of 0.5 mg/ml with the relative activity of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morrison, M., & Allen, P. Z. (1966). Lactoperoxidase: identification and isolation from harderian and lacrimal glands. Science, 152, 1626–1628.

    Article  CAS  Google Scholar 

  2. Morrison, M., Allen, P. Z., Bright, J., & Jayasinghe, W. (1965). Lactoperoxidase. V. Identification and isolation of lactoperoxidase from salivary gland. Archives of Biochemistry and Biophysics, 111, 126–133.

    Article  CAS  Google Scholar 

  3. Sharma, S., Singh, A. K., Kaushik, S., Sinha, M., Singh, R. P., Sharma, P., Sirohi, H., Kaur, P., & Singh, T. P. (2013). Lactoperoxidase: structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol, 4, 108–128.

    CAS  Google Scholar 

  4. Sisecioglu, M., Cankaya, M., Gulcin, I., & Ozdemir, H. (2010). Interactions of melatonin and serotonin with lactoperoxidase enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 25, 779–783.

    Article  CAS  Google Scholar 

  5. Bafort, F., Parisi, O., Perraudin, J. P., & Jijakli, M. H. (2014). Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res, 2014, 517164.

    Article  CAS  Google Scholar 

  6. Bolscher, B. G., Plat, H., & Wever, R. (1984). Some properties of human eosinophil peroxidase, a comparison with other peroxidases. Biochimica et Biophysica Acta, 784, 177–186.

    Article  CAS  Google Scholar 

  7. Harrison, J. E., & Schultz, J. (1976). Studies on the chlorinating activity of myeloperoxidase. The Journal of Biological Chemistry, 251, 1371–1374.

    CAS  Google Scholar 

  8. Langbakk, B., & Flatmark, T. (1989). Lactoperoxidase from human colostrum. The Biochemical Journal, 259, 627–631.

    Article  CAS  Google Scholar 

  9. Langbakk, B., & Flatmark, T. (1984). Demonstration and partial purification of lactoperoxidase from human colostrum. FEBS Letters, 174, 300–303.

    Article  CAS  Google Scholar 

  10. Wever, R., Kast, W. M., Kasinoedin, J. H., & Boelens, R. (1982). The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochimica et Biophysica Acta, 709, 212–219.

    Article  CAS  Google Scholar 

  11. Petrides, P. E., & Nauseef, W. M. (2000). The peroxidase multigene family of enzymes: biochemical basis and clinical applications (p. 193). Berlin: Springer-Verlag, GmbH.

    Book  Google Scholar 

  12. Furtmuller, P. G., Jantschko, W., Zederbauer, M., Jakopitsch, C., Arnhold, J., & Obinger, C. (2004). Kinetics of interconversion of redox intermediates of lactoperoxidase, eosinophil peroxidase and myeloperoxidase. Japanese Journal of Infectious Diseases, 57, S30–S31.

    Google Scholar 

  13. Chandler, J. D., & Day, B. J. (2015). Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radical Research, 49, 695–710.

    Article  CAS  Google Scholar 

  14. Pattison, D. I., Davies, M. J., & Hawkins, C. L. (2012). Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radical Research, 46, 975–995.

    Article  CAS  Google Scholar 

  15. Lloyd, M. M., Grima, M. A., Rayner, B. S., Hadfield, K. A., Davies, M. J., & Hawkins, C. L. (2013). Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radical Biology & Medicine, 65, 1352–1362.

    Article  CAS  Google Scholar 

  16. Rayner, B. S., Love, D. T., & Hawkins, C. L. (2014). Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radical Biology & Medicine, 71, 240–255.

    Article  CAS  Google Scholar 

  17. Storkey, C., Pattison, D. I., White, J. M., Schiesser, C. H., & Davies, M. J. (2012). Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives. Chemical Research in Toxicology, 25, 2589–2599.

    Article  CAS  Google Scholar 

  18. Hawkins, C. L. (2009). The role of hypothiocyanous acid (HOSCN) in biological systems. Free Radical Research, 43, 1147–1158.

    Article  CAS  Google Scholar 

  19. Lloyd, M. M., van Reyk, D. M., Davies, M. J., & Hawkins, C. L. (2008). Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. The Biochemical Journal, 414, 271–280.

    Article  CAS  Google Scholar 

  20. Furtmuller, P. G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C., & Obinger, C. (2006). Active site structure and catalytic mechanisms of human peroxidases. Archives of Biochemistry and Biophysics, 445, 199–213.

    Article  Google Scholar 

  21. Gajhede, M. (2001). Plant peroxidases: substrate complexes with mechanistic implications. Biochemical Society Transactions, 29, 91–98.

    Article  CAS  Google Scholar 

  22. Poulos, T. L., Edwards, S. L., Wariishi, H., & Gold, M. H. (1993). Crystallographic refinement of lignin peroxidase at 2a. The Journal of Biological Chemistry, 268, 4429–4440.

    CAS  Google Scholar 

  23. Jantschko, W., Furtmuller, P. G., Allegra, M., Livrea, M. A., Jakopitsch, C., Regelsberger, G., & Obinger, C. (2002). Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Archives of Biochemistry and Biophysics, 398, 12–22.

    Article  CAS  Google Scholar 

  24. Kimura, S., & Ikeda-Saito, M. (1988). Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family. Proteins, 3, 113–120.

    Article  CAS  Google Scholar 

  25. O’Brien, P. J. (2000). Peroxidases. Chemico-Biological Interactions, 129, 113–139.

    Article  Google Scholar 

  26. Naidu, A. S. (2000). In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 103–132). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  27. Pourtois, M., Binet, C., Van Tieghem, N., Courtois, P., Vandenabbeele, A., & Thiry, L. (1990). Inhibition of HIV infectivity by lactoperoxidase-produced hypothiocyanite. Journal de Biologie Buccale, 18, 251–253.

    CAS  Google Scholar 

  28. Mikola, H., Waris, M., & Tenovuo, J. (1995). Inhibition of herpes simplex virus type 1, respiratory syncytial virus and echovirus type 11 by peroxidase-generated hypothiocyanite. Antiviral Research, 26, 161–171.

    Article  CAS  Google Scholar 

  29. Barrett, N. E., Grandison, A. S., & Lewis, M. J. (1999). Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. The Journal of Dairy Research, 66, 73–80.

    Article  CAS  Google Scholar 

  30. Korhonen, H. (1980). A new method for preserving milk—the lactoperoxidase antibacterial system. World Anim Rev, 35, 23–29.

    Google Scholar 

  31. Wright, R. C., & Tramer, J. (1958). Factors influencing the activity of cheese starters—the role of milk peroxidase. Journal of Dairy Research, 25, 104–118.

    Article  CAS  Google Scholar 

  32. Roizman, B., Pellett, P. E., Knipe, D. M., & Whitley, R. J. (2001). In D. M. Knipe & P. M. Howley (Eds.), Fields virology, vol. 2 (pp. 2381–2509). Hagerstown: Lippincott.

    Google Scholar 

  33. Grinde, B. (2013). Herpesviruses: latency and reactivation—viral strategies and host response. J Oral Microbiol, 5

  34. Esmann, J. (2001). The many challenges of facial herpes simplex virus infection. The Journal of Antimicrobial Chemotherapy, 47(Suppl T1), 17–27.

    Article  CAS  Google Scholar 

  35. Mitchell, B. M., Bloom, D. C., Cohrs, R. J., Gilden, D. H., & Kennedy, P. G. E. (2003). Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. Journal of Neurovirology, 9, 194–204.

    Article  CAS  Google Scholar 

  36. Kukhanova, M. K., Korovina, A. N., & Kochetkov, S. N. (2014). Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc), 79, 1635–1652.

    Article  CAS  Google Scholar 

  37. Redwan, E. M., Larsen, N. L., & Wilson, I. A. (2003). Simplified procedure for elimination of co-purified contaminant proteins from human colostrums IgA1. J Egypt Ger Soc Zool, 40A, 251–260.

    Google Scholar 

  38. Arslan, O., Nalbantoglu, B., Demir, N., Ozdemir, H., & Kufrevioglu, O. I. (1996). A new method for the purification of carbonic anhydrase isozymes by affinity chromatography. Turk J Medical Scie, 26, 163–166.

    CAS  Google Scholar 

  39. Bozdag, M., Isik, S., Beyaztas, S., Arslan, O., & Supuran, C. T. (2015). Synthesis of a novel affinity gel for the purification of carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 240–244.

    Article  CAS  Google Scholar 

  40. Atasever, A., Ozdemir, H., Gulcin, I., & Irfan Kufrevioglu, O. (2013). One-step purification of lactoperoxidase from bovine milk by affinity chromatography. Food Chemistry, 136, 864–870.

    Article  CAS  Google Scholar 

  41. Cuatrecasas, P. (1970). Agarose derivatives for purification of protein by affinity chromatography. Nature, 228, 1327–1328.

    Article  CAS  Google Scholar 

  42. Cuatrecasas, P. (1970). Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. The Journal of Biological Chemistry, 245, 3059–3065.

    CAS  Google Scholar 

  43. Şisecioglu, M., Gülçin, I., Çankaya, M., & Ozdemir, H. (2012). The inhibitory effects of L-adrenaline on lactoperoxidase enzyme (LPO) purified from buffalo milk. International Journal of Food Properties, 15, 1182–1189.

    Article  Google Scholar 

  44. Sisecioglu, M., Uguz, M. T., Cankaya, M., Ozdemir, H., & Gulcin, I. (2011). Effects of ceftazidime pentahydrate, prednisolone, amikacin sulfate, ceftriaxone sodium and teicoplanin on bovine milk lactoperoxidase activity. International Journal of Pharmacology, 7, 79–83.

    Article  CAS  Google Scholar 

  45. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  46. Chance, B., & Maehly, A. C. (1955). In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (Vol. II, pp. 764–775). New York: Academic Press.

    Google Scholar 

  47. Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences, 121, 404–427.

    Article  CAS  Google Scholar 

  48. Lineweaver, H. (1985). Citation classic—the determination of enzyme dissociation constants. Current Contents/Life Sciences, 19–19

  49. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  50. Mollaei, H. R., Monavari, S. H., Arabzadeh, S., Shahrabadi, M. S., & Fazlalipour, M. (2014). Antiviral activity of Sirna UL42 against herpes simplex virus type 1 in HeLa cell culture. J Antivir Antiretrovir, 6, 114–119.

    Google Scholar 

  51. Almehdar, H. A., El-Fakharany, E. M., Uversky, V. N., & Redwan, E. M. (2015). Disorder in milk proteins: structure, functional disorder, and biocidal potentials of lactoperoxidase. Current Protein & Peptide Science, 16, 352–365.

    Article  CAS  Google Scholar 

  52. Boots, J. W., & Floris, R. (2006). Lactoperoxidase: from catalytic mechanism to practical applications. International Dairy Journal, 16, 1272–1276.

    Article  CAS  Google Scholar 

  53. Benoy, M. J., Essy, A. K., Sreekumar, B., & Haridas, M. (2000). Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase. Life Sciences, 66, 2433–2439.

    Article  CAS  Google Scholar 

  54. Dionysius, D. A., Grieve, P. A., & Vos, A. C. (1992). Studies on the lactoperoxidase system: reaction kinetics and antibacterial activity using two methods for hydrogen peroxide generation. The Journal of Applied Bacteriology, 72, 146–153.

    Article  CAS  Google Scholar 

  55. Soukka, T., Lumikari, M., & Tenovuo, J. (1991). Combined inhibitory effect of lactoferrin and lactoperoxidase system on the viability of Streptococcus mutans, serotype c. Scandinavian Journal of Dental Research, 99, 390–396.

    CAS  Google Scholar 

  56. Redwan, E. M., Almehdar, H. A., EL-Fakharany, E. M., Baig, A. W. K., & Uversky, V. N. (2015). Potential antiviral activities of camel, bovine, and human lactoperoxidases against hepatitis C virus genotype 4. RSC Advances, 5, 60441–60452.

    Article  CAS  Google Scholar 

  57. Reiter, B. (1978). The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found Symp, 285–294

  58. Seifu, E., Buys, E. M., & Donkin, E. F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends in Food Science & Technology, 16, 137–154.

    Article  CAS  Google Scholar 

  59. van Hooijdonk, A. C., Kussendrager, K. D., & Steijns, J. M. (2000). In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. The British Journal of Nutrition, 84(Suppl 1), S127–S134.

    Google Scholar 

  60. Wolfson, L. M., & Sumner, S. S. (1993). Antibacterial activity of the lactoperoxidase system—a review. Journal of Food Protection, 56, 887–892.

    Article  CAS  Google Scholar 

  61. Pruitt, K. M., & Kamau, D. N. (1991). In D. S. Robinson & N. A. M. Eskin (Eds.), Oxidative enzymes in foods (pp. 133–174). London: Elsevier Applied Sciences.

    Google Scholar 

  62. Almahdy, O., El-Fakharany, E. M., El-Dabaa, E., Ng, T. B., & Redwan, E. M. (2011). Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and HeLa cell lines. Hepatitis Monthly, 11, 724–730.

    Article  Google Scholar 

  63. El-Fakharany, E. M., Tabll, A., El-Wahab, A. A., Haroun, B. M., & Redwan, E. M. (2008). Potential activity of camel milk-amylase and lactoferrin against hepatitis C virus infectivity in hepG2 and lymphocytes. Hepatitis Monthly, 8, 101–109.

    Google Scholar 

  64. EL-Fakharany, E. M., Abedelbaky, N., Haroun, B. M., Sanchez, L., Redwan, N. A., Redwan, E. M. (2012). Anti-infectivity of camel polyclonal antibodies against hepatitis C virus in Huh7.5 hepatoma. Virology Journal, 9

  65. EL-Fakharany, E. M., Sanchez, L., Al-Mehdar, H. A., Redwan, E. M. (2013). Effectiveness of human, camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: comparison study. Virology Journal, 10

  66. Liao, Y., El-Fakkarany, E., Lonnerdal, B., & Redwan, E. M. (2012). Inhibitory effects of native and recombinant full-length camel lactoferrin and its N and C lobes on hepatitis C virus infection of Huh7.5 cells. Journal of Medical Microbiology, 61, 375–383.

    Article  CAS  Google Scholar 

  67. Ng, T. B., Wong, J. H., Almahdy, O., El-Fakharany, E. M., El-Dabaa, E., & Redwan, E. M. (2012). In A. M. Ventimiglia & J. M. Birkenhäger (Eds.), Casein: production, uses and health effects. New York: Nova Science Publishers.

    Google Scholar 

  68. Redwan, E. M., & Tabll, A. (2007). Camel lactoferrin markedly inhibits hepatitis C virus genotype 4 infection of human peripheral blood leukocytes. Journal of Immunoassay & Immunochemistry, 28, 267–277.

    Article  CAS  Google Scholar 

  69. Redwan, E. M., EL-Fakharany, E. M., Uversky, V. N., Linjawi, M. H. (2014). Screening the anti infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against hepatitis C virus. Bmc Complementary and Alternative Medicine, 14

  70. Gothefors, L., & Marklund, S. (1975). Lactoperoxidase activity in human milk and in saliva of newborn infants. Infection and Immunity, 11, 1210–1215.

    CAS  Google Scholar 

  71. Kumar, R., Bhatia, K. L., Dauter, Z., Betzel, C., & Singh, T. P. (1995). Purification, crystallization and preliminary X-ray crystallographic analysis of lactoperoxidase from buffalo milk. Acta Crystallographica. Section D, Biological Crystallography, 51, 1094–1096.

    Article  CAS  Google Scholar 

  72. Wijkstrom-Frei, C., El-Chemaly, S., Ali-Rachedi, R., Gerson, C., Cobas, M. A., Forteza, R., Salathe, M., & Conner, G. E. (2003). Lactoperoxidase and human airway host defense. American Journal of Respiratory Cell and Molecular Biology, 29, 206–212.

    Article  CAS  Google Scholar 

  73. Kussendrager, K. D., & van Hooijdonk, A. C. (2000). Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. The British Journal of Nutrition, 84(Suppl 1), S19–S25.

    CAS  Google Scholar 

  74. Sisecioglu, M., Cankaya, M., Gulcin, I., & Ozdemir, H. (2009). The inhibitory effect of propofol on bovine lactoperoxidase. Protein and Peptide Letters, 16, 46–49.

    Article  CAS  Google Scholar 

  75. Perraudin, J. P. (1991). Protéines à activités biologiques: lactoferrine et lactoperoxydase. Connaissances récemment acquises et technologies d’obtention. Lait, 71, 191–211.

    CAS  Google Scholar 

  76. Ramet, J. P. (2001). The technology of making cheese from camel milk (Camelus dromedarius). Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  77. el Agamy, E. I., Ruppanner, R., Ismail, A., Champagne, C. P., & Assaf, R. (1992). Antibacterial and antiviral activity of camel milk protective proteins. The Journal of Dairy Research, 59, 169–175.

    Article  Google Scholar 

  78. Reiter, B., & Harnulv, G. (1984). Lactoperoxidase antibacterial system—natural occurrence, biological functions and practical applications. Journal of Food Protection, 47, 724–732.

    Article  CAS  Google Scholar 

  79. Sisecioglu, M., Gulcin, I., Cankaya, M., Atasever, A., & Ozdemir, H. (2010). The effects of norepinephrine on lactoperoxidase enzyme (LPO). Scientific Research and Essays, 5, 1351–1356.

    Google Scholar 

  80. Nandini, K. E., & Rastogi, N. K. (2010). Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction. Biotechnology Progress, 26, 763–771.

    Article  CAS  Google Scholar 

  81. Nandini, K. E., & Rastogi, N. K. (2011). Integrated downstream processing of lactoperoxidase from milk whey involving aqueous two-phase extraction and ultrasound-assisted ultrafiltration. Applied Biochemistry and Biotechnology, 163, 173–185.

    Article  CAS  Google Scholar 

  82. Jooyandeh, H., Aberoumand, A., & Nasehi, B. (2011). Application of lactoperoxidase system in fish and food products: a review. J Agric Environ Sci, 10, 89–96.

    Google Scholar 

  83. Gingerich, A., Pang, L., Hanson, J., Dlugolenski, D., Streich, R., Lafontaine, E. R., Nagy, T., Tripp, R. A., & Rada, B. (2016). Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza a virus. Inflammation Research, 65, 71–80.

    Article  CAS  Google Scholar 

  84. Antoine, T. E., Park, P. J., & Shukla, D. (2013). Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Reviews in Medical Virology, 23, 194–208.

    Article  CAS  Google Scholar 

  85. Blann, A., Knight, G., Moore, G. (2010). Hematology. ed. Oxford Press, Oxford

  86. Van Antwerpen, P., Boudjeltia, K. Z., Babar, S., Legssyer, I., Moreau, P., Moguilevsky, N., Vanhaeverbeek, M., Ducobu, J., & Neve, J. (2005). Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Biochemical and Biophysical Research Communications, 337, 82–88.

    Article  CAS  Google Scholar 

  87. Huemer, H. P., Menzel, H. J., Potratz, D., Brake, B., Falke, D., Utermann, G., & Dierich, M. P. (1988). Herpes-simplex virus binds to human-serum lipoprotein. Intervirology, 29, 68–76.

    CAS  Google Scholar 

  88. Sakamaki, K., Ueda, T., & Nagata, S. (2002). The evolutionary conservation of the mammalian peroxidase genes. Cytogenetic and Genome Research, 98, 93–95.

    Article  CAS  Google Scholar 

  89. Burner, U., Jantschko, W., & Obinger, C. (1999). Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Letters, 443, 290–296.

    Article  CAS  Google Scholar 

  90. Fischer, A. J., Lennemann, N. J., Krishnamurthy, S., Pocza, P., Durairaj, L., Launspach, J. L., Rhein, B. A., Wohlford-Lenane, C., Lorentzen, D., Banfi, B., & McCray, P. B. (2011). Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide. American Journal of Respiratory Cell and Molecular Biology, 45, 874–881.

    Article  CAS  Google Scholar 

  91. Derscheid, R. J., van Geelen, A., Berkebile, A. R., Gallup, J. M., Hostetter, S. J., Banfi, B., McCray, P. B., & Ackermann, M. R. (2014). Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity. American Journal of Respiratory Cell and Molecular Biology, 50, 389–397.

    Google Scholar 

  92. Speth, C., Brodde, M. F., Hagleitner, M., Rambach, G., Van Aken, H., Dierich, M., Kehrel, B. E. (2013). Neutrophils turn plasma proteins into weapons against HIV-1. Plos One, 8

  93. Cegolon, L., Salata, C., Piccoli, E., Juarez, V., Palu, G., Mastrangelo, G., & Calistri, A. (2013). In vitro antiviral activity of hypothiocyanite against a/H1N1/2009 pandemic influenza virus. International Journal of Hygiene and Environmental Health, 217, 17–22.

    Article  Google Scholar 

  94. Klebanoff, S. J. (1967). Iodination of bacteria: a bactericidal mechanism. The Journal of Experimental Medicine, 126, 1063–1078.

    Article  CAS  Google Scholar 

  95. Morrison, M., & Bayse, G. S. (1970). Catalysis of iodination by lactoperoxidase. Biochemistry, 9, 2995–3000.

    Article  CAS  Google Scholar 

  96. Nagy, P., Jameson, G. N., & Winterbourn, C. C. (2009). Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chemical Research in Toxicology, 22, 1833–1840.

    Article  CAS  Google Scholar 

  97. Chandler, J. D., & Day, B. J. (2012). Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochemical Pharmacology, 84, 1381–1387.

    Article  CAS  Google Scholar 

  98. Hawkins, C. L., & Davies, M. J. (2002). Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Chemical Research in Toxicology, 15, 83–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir N. Uversky or Elrashdy M. Redwan.

Ethics declarations

Funding

This work was partially funded by the Science and Technology Development Fund (STDF; ID-406) for EMR.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Fakharany, E.M., Uversky, V.N. & Redwan, E.M. Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases Against Herpes Simplex Virus Type 1. Appl Biochem Biotechnol 182, 294–310 (2017). https://doi.org/10.1007/s12010-016-2327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2327-x

Keywords

Navigation