Skip to main content
Log in

Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Messina, M.J. and Lie, K.S. (1997) Soybeans: chemistry, technology, and utilization. Chapman & Hall/International Thompson Publishing.

  2. Singh, G. (2010) The soybean: botany, production, and uses. CAB International.

  3. Kulcheski, F. R., de Oliveira, L. F., Molina, L. G., Almerão, M. P., Rodrigues, F. A., Marcolino, J., & Marcelino-Guimarães, F. C. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC genomics, 12, 307.

    Article  CAS  Google Scholar 

  4. Knogge, W. (1996). Fungal infection of plants. The Plant Cell., 8, 1711.

    Article  CAS  Google Scholar 

  5. Wrather, J. and Koenning, S. (2009). Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Progress.

  6. Aoki, T., O’Donnell, K., Homma, Y., & Lattanzi, A. R. (2003). Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex—F. virguliforme in North America and F. tucumaniae in South America. Mycologia., 95, 660–684.

    Article  Google Scholar 

  7. Kolander, T., Bienapfl, J., Kurle, J., & Malvick, D. (2012). Symptomatic and asymptomatic host range of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Plant Disease., 96, 1148–1153.

    Article  CAS  Google Scholar 

  8. O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia., 92, 919–938.

    Article  Google Scholar 

  9. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature., 484, 186–194.

    Article  CAS  Google Scholar 

  10. Westphal, A., Abney, S.T., Xing, L., and Shaner, G. (2008). Sudden death syndrome of soybean. The Plant Health Instructor.

  11. Njiti, V., Suttner, R., Gray, L., Gibson, P., & Lightfoot, D. (1997). Rate-reducing resistance to Fusarium solani f. sp. phaseoli underlies field resistance to soybean sudden death syndrome. Crop Science., 37, 132–138.

    Article  Google Scholar 

  12. Brar, H. K., Swaminathan, S., & Bhattacharyya, M. K. (2011). The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean. Molecular Plant-Microbe Interactions., 24, 1179–1188.

    Article  CAS  Google Scholar 

  13. Radwan, O., Li, M., Calla, B., Li, S., Hartman, G. L., & Clough, S. J. (2013). Effect of Fusarium virguliforme phytotoxin on soybean gene expression suggests a role in multidimensional defence. Molecular plant pathology., 14, 293–307.

    Article  CAS  Google Scholar 

  14. Afzal, A. J., Wood, A. J., & Lightfoot, D. A. (2008). Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Molecular Plant-Microbe Interactions., 21, 507–517.

    Article  CAS  Google Scholar 

  15. Srour, A., Afzal, A. J., Blahut-Beatty, L., Hemmati, N., Simmonds, D. H., Li, W., et al. (2012). The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC genomics., 13, 368.

    Article  CAS  Google Scholar 

  16. Afzal, A. J., & Lightfoot, D. A. (2007). Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis. Protein Expression and Purification, 53, 346–355.

    Article  CAS  Google Scholar 

  17. Afzal, A.J., Srour, A., Goil, A., Vasudaven, S., Liu, T., Samudrala, R., Lightfoot, D.A. (2013). Homo-dimerization and ligand binding by the leucine-rich repeat domain at RHG1/RFS2 underlying resistance to two soybean pathogens. BMC plant biology. 13, 43.

  18. Iqbal, M., Meksem, K., Njiti, V., Kassem, M. A., & Lightfoot, D. (2001). Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex× Forrest RILs. Theoretical and Applied Genetics., 102, 187–192.

    Article  CAS  Google Scholar 

  19. Palmblad, M., Henkel, C. V., Dirks, R. P., Meijer, A. H., Deelder, A. M., & Spaink, H. P. (2013). Parallel deep transcriptome and proteome analysis of zebrafish larvae. BMC research notes, 6, 428.

    Article  Google Scholar 

  20. Iqbal, M., Yaegashi, S., Ahsan, R., Shopinski, K. L., & Lightfoot, D. A. (2005). Root response to Fusarium solani f. sp. glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theoretical and Applied Genetics., 110, 1429–1438.

    Article  CAS  Google Scholar 

  21. Ji, J., Scott, M., & Bhattacharyya, M. (2006). Light is essential for degradation of ribulose-1, 5-bisphosphate carboxylase-oxygenase large subunit during sudden death syndrome development in soybean. Plant Biology., 8, 597–605.

    Article  CAS  Google Scholar 

  22. Subramanian, S., Cho, U.-H., Keyes, C., & Yu, O. (2009). Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC plant biology., 9, 119.

    Article  Google Scholar 

  23. Rep, M., Dekker, H. L., Vossen, J. H., de Boer, A. D., Houterman, P. M., & Speijer, D. (2002). Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiology., 130, 904–917.

    Article  CAS  Google Scholar 

  24. Wan, J., Torres, M., Ganapathy, A., Thelen, J., DaGue, B. B., Mooney, B., & Stacey, G. (2005). Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 18, 458–467.

    Article  CAS  Google Scholar 

  25. Roggero, P., & Pennazio, S. (1989). The extracellular acidic and basic pathogenesis-related proteins of soybean induced by viral infection. Journal of Phytopathology., 127, 274–280.

    Article  CAS  Google Scholar 

  26. Afzal, A. J., Natarajan, A., Saini, N., Iqbal, M. J., Geisler, M., El Shemy, H. A., & Lightfoot, D. A. (2009). The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant physiology, 151, 1264–1280.

    Article  CAS  Google Scholar 

  27. Bunai, K., & Yamane, K. (2005). Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci., 815, 227–236.

    Article  CAS  Google Scholar 

  28. Weiss, W., Weiland, F., & Gorg, A. (2009). Protein detection and quantitation technologies for gel-based proteome analysis. Methods Mol Biol., 564, 59–82.

    Article  CAS  Google Scholar 

  29. Hosoya, N., Sakumotoa, M., Tomitab, Y., & Kondo, T. (2014). Approach to spot overlapping problem in 2D-PAGE revealed clinical and functional significance of RKIP and MnSOD in renal cell carcinoma. EuPA Open Proteomics., 4, 129–139.

    Article  CAS  Google Scholar 

  30. Lightfoot, D.A. (2008). Soybean genomics: developments through the use of cultivar “Forrest”. International journal of plant genomics. 2008.

  31. Triwitayakorn, K., Njiti, V., Iqbal, M., Yaegashi, S., Town, C., & Lightfoot, D. (2005). Genomic analysis of a region encompassing QRfs1 and QRfs2: genes that underlie soybean resistance to sudden death syndrome. Genome., 48, 125–138.

    Article  CAS  Google Scholar 

  32. Njiti, V., Johnson, J., Torto, T., Gray, L., & Lightfoot, D. (2001). Inoculum rate influences selection for field resistance to soybean sudden death syndrome in the greenhouse. Crop Science., 41, 1726–1731.

    Article  Google Scholar 

  33. Yuan, J., Njiti, V., Meksem, K., Iqbal, M., Triwitayakorn, K., Kassem, M. A., & Lightfoot, D. (2002). Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Science, 42, 271–277.

    Article  CAS  Google Scholar 

  34. Hajduch, M., Ganapathy, A., Stein, J. W., & Thelen, J. J. (2005). A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiology., 137, 1397–1419.

    Article  CAS  Google Scholar 

  35. Hurkman, W. J., & Tanaka, C. K. (1986). Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiology., 81, 802–806.

    Article  CAS  Google Scholar 

  36. Sheffield, J., Taylor, N., Fauquet, C., & Chen, S. (2006). The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics., 6, 1588–1598.

    Article  CAS  Google Scholar 

  37. Gabelica, V., Vreuls, C., Filée, P., Duval, V., Joris, B., & Pauw, E. D. (2002). Advantages and drawbacks of nanospray for studying noncovalent protein–DNA complexes by mass spectrometry. Rapid communications in mass spectrometry., 16, 1723–1728.

    Article  CAS  Google Scholar 

  38. Chen, S. (2006). Rapid protein identification using direct infusion nanoelectrospray ionization mass spectrometry. Proteomics., 6, 16–25.

    Article  CAS  Google Scholar 

  39. Siedow, J. N. (1991). Plant lipoxygenase: structure and function. Annual review of plant biology., 42, 145–188.

    Article  CAS  Google Scholar 

  40. Feussner, I., Kühn, H., & Wasternack, C. (2001). Lipoxygenase-dependent degradation of storage lipids. Trends in plant science., 6, 268–273.

    Article  CAS  Google Scholar 

  41. Porta, H., & Rocha-Sosa, M. (2002). Plant lipoxygenases. Physiological and molecular features. Plant Physiology., 130, 15–21.

    Article  CAS  Google Scholar 

  42. Staiger, C.J. (2000) Actin: a dynamic framework for multiple plant cell functions. Springer Science & Business Media.

  43. De Las Rivas, J., & Fontanillo, C. (2010). Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol., 6, e1000807.

    Article  Google Scholar 

  44. De Bodt, S., Proost, S., Vandepoele, K., Rouzé, P., & Van de Peer, Y. (2009). Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC genomics., 10, 288.

    Article  Google Scholar 

  45. Pagel, P., Mewes, H.-W., & Frishman, D. (2004). Conservation of protein–protein interactions—lessons from ascomycota. Trends in Genetics., 20, 72–76.

    Article  CAS  Google Scholar 

  46. Eckardt, N. A. (2002). Plant disease susceptibility genes? Plant Cell., 14, 1983–1986.

    Article  CAS  Google Scholar 

  47. Graham, M., Weidner, J., Wheeler, K., Pelow, M., & Graham, T. (2003). Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. Physiological and Molecular Plant Pathology., 63, 141–149.

    Article  CAS  Google Scholar 

  48. Vogel, J. P., Raab, T. K., Schiff, C., & Somerville, S. C. (2002). PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell., 14, 2095–2106.

    Article  CAS  Google Scholar 

  49. Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., & Fritig, B. (1993). Plant ‘pathogenesis-related’proteins and their role in defense against pathogens. Biochimie, 75, 687–706.

    Article  CAS  Google Scholar 

  50. Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science., 2, 266–274.

    Article  Google Scholar 

  51. Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current opinion in plant biology., 5, 325–331.

    Article  CAS  Google Scholar 

  52. Wu, H.-C., Hsu, S.-F., Luo, D.-L., Chen, S.-J., Huang, W.-D., Lur, H.-S., & Jinn, T.-L. (2010). Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. Journal of experimental botany., 61, 2843–2852.

    Article  CAS  Google Scholar 

  53. Igamberdiev, A. U., & Hill, R. D. (2009). Plant mitochondrial function during anaerobiosis. Annals of botany., 103, 259–268.

    Article  CAS  Google Scholar 

  54. Ohwaki, Y., Kawagishi-Kobayashi, M., Wakasa, K., Fujihara, S., & Yoneyama, T. (2005). Induction of class-1 non-symbiotic hemoglobin genes by nitrate, nitrite and nitric oxide in cultured rice cells. Plant and Cell Physiology, 46, 324–331.

    Article  CAS  Google Scholar 

  55. Mazarei, M., Liu, W., Al-Ahmad, H., Arelli, P. R., Pantalone, V. R., & Stewart Jr., C. N. (2011). Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theor Appl Genet., 123, 1193–1206.

    Article  CAS  Google Scholar 

  56. Mukherjee, A. K., Carp, M.-J., Zuchman, R., Ziv, T., Horwitz, B. A., & Gepstein, S. (2012). Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. Journal of proteomics., 73, 709–720.

    Article  Google Scholar 

  57. Carmo-Silva, A. E., & Salvucci, M. E. (2013). The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant physiology., 161, 1645–1655.

    Article  CAS  Google Scholar 

  58. Laporte, D., Olate, E., Salinas, P., Salazar, M., Jordana, X., & Holuigue, L. (2012). Glutaredoxin GRXS13 plays a key role in protection against photooxidative stress in Arabidopsis. Journal of experimental botany., 63, 503–515.

    Article  CAS  Google Scholar 

  59. Li, J., Brader, G., & Palva, E. T. (2008). Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Molecular plant., 1, 482–495.

    Article  CAS  Google Scholar 

  60. Lee, M. W., Jelenska, J., & Greenberg, J. T. (2008). Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. The Plant Journal., 54, 452–465.

    Article  CAS  Google Scholar 

  61. Mahalingam, R., Gomez-Buitrago, A., Eckardt, N., Shah, N., Guevara-Garcia, A., Day, P., & Fedoroff, N. V. (2003). Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol, 4, R20.

    Article  Google Scholar 

  62. Radwan, O., Liu, Y., & Clough, S. J. (2011). Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. Mol Plant Microbe Interact., 24, 958–972.

    Article  CAS  Google Scholar 

  63. Maier, T., Guell, M., & Serrano, L. (2009). Correlation of mRNA and protein in complex biological samples. FEBS Lett., 583, 3966–3973.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Southern Illinois University, Carbondale, College of Agricultural Sciences, and Office of the Vice Chancellor for Research. Funds were provided by the United Soybean Board under the project “Application of Biotechnology to the Control of Sudden Death Syndrome (SDS)” to M. Javed Iqbal and David A. Lightfoot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed J. Afzal.

Additional information

M. Javed Iqbal and Maryam Majeed are joint first authors

Electronic supplementary material

Supplementary Figure 1.

Pedigree for the origins of soybean cyst nematode and sudden death syndrome resistance in EF38, showing period of release and percent heterozygosis plus heterogeneity where known (blue number). (GIF 211 kb)

High resolution image (TIFF 1521 kb)

Supplementary Figure 2.

Accession IDs of all spots in the 2D predicted interactome in Fig. 6. (PDF 169 kb)

Supplementary File 1.

Accession IDs, names, and direct interacting proteins of all the nodes represented in the interactome in Fig. 6 (separately attached, Excel file) (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.J., Majeed, M., Humayun, M. et al. Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme . Appl Biochem Biotechnol 180, 1657–1674 (2016). https://doi.org/10.1007/s12010-016-2194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2194-5

Keywords

Navigation