Skip to main content
Log in

Transformation of Blackgram (Vigna mungo (L.) Hepper) by Barley Chitinase and Ribosome-Inactivating Protein Genes Towards Improving Resistance to Corynespora Leaf Spot Fungal Disease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Blackgram (Vigna mungo (L.) Hepper), an important grain legume crop, is sensitive to many fungal pathogens including Corynespora cassiicola, the causal agent of corynespora leaf spot disease. In the present study, plasmid pGJ42 harboring neomycin phosphotransferase (nptII) a selectable marker gene, the barley antifungal genes chitinase (AAA56786) and ribosome-inactivating protein (RIP; AAA32951) were used for the transformation, to develop fungal resistance for the first time in blackgram. The presence and integration of transgene into the blackgram genome was confirmed by PCR and Southern analysis with an overall transformation frequency of 10.2 %. Kanamycin selection and PCR analysis of T0 progeny revealed the inheritance of transgene in Mendelian fashion (3:1). Transgenic plants (T1), evaluated for fungal resistance by in vitro antifungal assay, arrested the growth of C. cassiicola up to 25–40 % over the wild-type plants. In fungal bio-assay screening, the transgenic plants (T1) sprayed with C. cassiicola spores showed a delay in onset of disease along with their lesser extent in terms of average number of diseased leaves and reduced number and size of lesions. The percent disease protection among different transformed lines varies in the range of 27–47 % compare to control (untransformed) plants. These results demonstrate potentiality of chitinase and RIP from a heterologous source in developing fungal disease protection in blackgram and can be helpful in increasing the production of blackgram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

IBA:

Indole-3-butyric acid

nptII:

Neomycin phosphotransferase

RIP:

Ribosome-inactivating protein

RM:

Rooting media

SR:

Shoot regeneration medium

References

  1. Jeswani, L. M., & Baldev, B. (1990). Publication & information division. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  2. Singh, R. A., Gurha, S. N., & Ghosh, A. (2005). In T. D. Thind (Ed.), Diseases of field crop and their management (2nd ed., pp. 179–204). Delhi: Daya Publishing House.

    Google Scholar 

  3. Singh, R. S. (1990). Plant diseases (6th ed.). New Delhi: Oxford and IBH.

    Google Scholar 

  4. Fillippone, E. (1993). Grain Legumes, 2, 20–21.

    Google Scholar 

  5. Punja, Z. K. (2001). Canadian Journal of Plant Pathology, 23, 216–235.

    Article  CAS  Google Scholar 

  6. Phuntumart, V. (2003). In C. N. Stewart Jr. (Ed.), Transgenic plants: current innovations and future trends (pp. 180–215). Wymondmam, England: Horizon Scientific Press.

    Google Scholar 

  7. Grover, A., & Gowthaman, R. (2003). Current Science, 84, 330–340.

    Google Scholar 

  8. Stefani, F. O. P., & Hamelin, R. C. (2010). Environmental Reviews, 18, 441–475.

    Article  Google Scholar 

  9. Ceasar, S. A., & Ignacimuthu, S. (2012). Biotechnology Letters, 34, 995–1002.

    Article  Google Scholar 

  10. Rohini, V. K., & Rao, K. S. (2001). Plant Science, 160, 889–898.

    Article  CAS  Google Scholar 

  11. Datta, K., Tu, J., Oliva, N., Ona, I., Velazhahan, R., & Mew, T. W. (2001). Plant Science, 160, 405–414.

    Article  CAS  Google Scholar 

  12. Mondal, K. K., Chatterjee, S. C., Viswakarma, N., Bhattacharya, R. C., & Grover, A. (2003). Current Microbiology, 47, 171–173.

    Article  CAS  Google Scholar 

  13. Mondal, K. K., Bhattacharya, R. C., Koundal, K. R., & Chatterjee, S. C. (2007). Plant Cell Report, 26, 247–252.

    Article  CAS  Google Scholar 

  14. Shin, S., Mackintosh, C. A., Lewis, J., Heinen, S. J., Radmer, L., Dill-Macky, R., Baldridge, G. D., Zeyen, R. J., & Muehlbauer, G. J. (2008). Journal of Experimental Botany, 59, 2371–2378.

    Article  CAS  Google Scholar 

  15. Girhepuje, P. V., & Shinde, G. B. (2011). Plant Cell Tissue and Organ Culture, 105, 243–251.

    Article  CAS  Google Scholar 

  16. Ignacimuthu, S., & Ceasar, S. A. (2012). Journal of Bioscience, 37, 135–147.

    Article  CAS  Google Scholar 

  17. Jach, G., Gornhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., & Maas, C. (1995). Plant Journal, 8, 97–109.

    Article  CAS  Google Scholar 

  18. Kim, J. K., Jang, I. C., Wu, R., Zuo, W. N., Boston, R. S., Lee, Y. H., Ahn, P., & Nahm, B. H. (2003). Transgenic Research, 12, 475–484.

    Article  CAS  Google Scholar 

  19. Bieri, S., Potrykus, I., & Futterer, J. (2003). Molecular Breeding, 11, 37–48.

    Article  CAS  Google Scholar 

  20. Li, H. Y., Zhu, Y. M., Chen, Q., Conner, R. L., Ding, X. D., & Zhang, B. B. (2004). Biologia Plantarum, 48, 367–374.

    Article  CAS  Google Scholar 

  21. Sridevi, G., Parameswari, C., Sabapathi, N., Raghupathy, V., & Veluthambi, K. (2008). Plant Science, 175, 283–290.

    Article  CAS  Google Scholar 

  22. Wally, O., Jayaraj, J., & Punja, Z. (2009). European Journal of Plant Pathology, 123, 331–342.

    Article  CAS  Google Scholar 

  23. Eapen, S. (2008). Biotechnology Advances, 26, 162–168.

    Article  CAS  Google Scholar 

  24. Atif, R. M., Patat-Ochatt, E. M., Svabova, L., Ondrej, V., Klenoticova, H., Jacas, L., Griga, M., & Ochatt, S. J. (2013). In U. Lüttge, W. Beyschlag, D. Francis, & J. Cushman (Eds.), Progress in Botany (Vol. 74, pp. 37–100). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  25. Saini, R., Sonia, & Jaiwal, P. K. (2003). Plant Cell Reports, 21, 851–859.

    CAS  Google Scholar 

  26. Saini, R., & Jaiwal, P. K. (2005). Plant Cell Reports, 24, 164–171.

    Article  CAS  Google Scholar 

  27. Saini, R., & Jaiwal, P. K. (2007). Biologia Plantarum, 51, 69–74.

    Article  CAS  Google Scholar 

  28. Muruganantham, M., Amutha, S., Selvaraj, N., Vengadesan, G., & Ganapathi, A. (2007). In Vitro Cellular and Developmental Biology –Plant, 43, 550–557.

  29. Bhomkar, P., Chandrama, P., Upadhyay, P., Saxena, M., Muthusamy, A., Shiva Prakash, N., Pooggin, M., Hohn, T., & Sarin, N. B. (2008). Molecular Breeding, 22, 169–181.

    Article  CAS  Google Scholar 

  30. Murashige, T., & Skoog, F. (1962). Physiology Plant, 15, 473–497.

    Article  CAS  Google Scholar 

  31. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  32. Rogers, S. O., & Bendich, A. J. (1988). In S. B. Gelvin & R. A. Schilperoot (Eds.), Plant molbiol manual (pp. 1–11). Dordrecht: Kluwer.

    Google Scholar 

  33. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  34. Zhu, H., Xu, X., Xiao, G., Yuan, L., & Li, B. (2007). Science in China Series C: Life Sciences, 50, 31–39.

    Article  CAS  Google Scholar 

  35. Logemann, J., Jach, G., Tommerup, H., Mundy, J., & Schell, J. (1992). Nature Biotechnology, 10, 305–308.

    Article  CAS  Google Scholar 

  36. Leah, R., Tommerup, H., Svendsen, I., & Mundy, J. (1991). Journal of Biological Chemistry, 266, 1564–1573.

    CAS  Google Scholar 

  37. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., & Broglie, R. (1991). Science, 254, 1194–1197.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to University Grant Commission, New Delhi for financial support to our research program. We are also thankful to the Max Planck Institute fur Zuchtungsforschung, Germany and Prof. P. K. Jaiwal, India for providing the gene construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, R., Saini, R. Transformation of Blackgram (Vigna mungo (L.) Hepper) by Barley Chitinase and Ribosome-Inactivating Protein Genes Towards Improving Resistance to Corynespora Leaf Spot Fungal Disease. Appl Biochem Biotechnol 174, 2791–2800 (2014). https://doi.org/10.1007/s12010-014-1226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1226-2

Keywords

Navigation