Skip to main content

Advertisement

Log in

Optimization of Laccase Production by Trametes versicolor Cultivated on Industrial Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Laccases are very interesting biocatalysts for several industrial applications. Its production by different white-rot fungi can be stimulated by a variety of inducing substrates, and the use of lignocellulosic wastes or industrial by-products is one of the possible approaches to reduce production costs. In this work, various industrial wastes were tested for laccase production by Trametes versicolor MZKI G-99. Solid waste from chemomechanical treatment facility of a paper manufacturing plant showed the highest potential for laccase production. Enzyme production during submerged cultivation of T. versicolor on the chosen industrial waste has been further improved by medium optimization using genetic algorithm. Concentrations of five components in the medium were optimized within 60 shake-flasks experiments, where the highest laccase activity of 2,378 U dm−3 was achieved. Waste from the paper industry containing microparticles of CaCO3 was found to stimulate the formation of freely dispersed mycelium and laccase production during submerged cultivation of T. versicolor. It was proven to be a safe and inexpensive substrate for commercial production of laccase and might be more widely applicable for metabolite production by filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asgher, M., Bhatti, H. N., Ashraf, M., & Legge, R. L. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19, 771–783.

    Article  CAS  Google Scholar 

  2. Schlosser, D., Grey, R., & Fritsche, W. (1997). Patents of lignolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose wheat straw and beech wood. Applied Microbiology and Biotechnology, 47, 412–418.

    Article  CAS  Google Scholar 

  3. Pozdnyakova, N., Leontievsky, A., & Golovleva, L. (1997). Oxidase of the white rot fungus Panus tigrinus. FEBS Letters, 350, 192–194.

    Article  Google Scholar 

  4. Teerapatsakul, C., Parra, R., Bucke, C., & Chitradon, L. (2007). Improvement of laccase production from Ganoderma sp. KU-Alk4 by medium engineering. World Journal of Microbiology and Biotechnology, 23, 1519–1527.

    Article  CAS  Google Scholar 

  5. Moreira, M. T., Feijoo, G., & Lema, J. M. (2003). Fungal bioreactors: application to white-rot fungi. Reviews in Environmental Science and Biotechnology, 2, 247–259.

    Article  CAS  Google Scholar 

  6. Claus, H. (2004). Laccases: structure, reactions, distribution. Micron, 35, 93–96.

    Article  CAS  Google Scholar 

  7. Mayer, A. M., & Staples, R. C. (2002). Laccase: new function for an old enzyme. Phytochemistry, 60, 551–565.

    Article  CAS  Google Scholar 

  8. Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology, 24, 219–226.

    Article  CAS  Google Scholar 

  9. Rodriguez Couto, S., & Toca Herrera, J. L. (2006). Industrial and biotechnological application of laccases: a review. Biotechnology Advances, 24, 500–513.

    Article  CAS  Google Scholar 

  10. Bollag, J.-M., & Leonowicz, A. (1984). Comparative studies of extracellular fungal laccases. Applied Microbiology and Biotechnology, 48, 849–854.

    CAS  Google Scholar 

  11. Revankar, S. M., & Lele, S. S. (2006). Increased production of extracellular laccase by the white rot fungus Coriolus versicolor. World Journal of Microbiology and Biotechnology, 22, 921–926.

    Article  CAS  Google Scholar 

  12. Jang, M. Y., Ryu, W. R., & Cho, M. H. (2002). Laccase production from repeated batch culture using free mycelia of Trametes sp. Enzyme and Microbial Technology, 30, 741–746.

    Article  CAS  Google Scholar 

  13. Arora, D. S., & Gill, P. K. (2000). Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 72, 283–285.

    Article  Google Scholar 

  14. Rosales, E., Rodriguez Couto, S., & Sanroman, A. (2002). New uses of food waste: application to laccase production by Trametes hirsuita. Biotechnology Letters, 24, 701–704.

    Article  CAS  Google Scholar 

  15. Kahraman, S. S., & Gurdal, I. H. (2002). Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresource Technology, 82, 215–217.

    Article  CAS  Google Scholar 

  16. Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E., & Hadar, Y. (2007). Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme and Microbial Technology, 41, 57–61.

    Article  CAS  Google Scholar 

  17. Xavier, A. M. R. B., Tavares, A. P. M., Ferreira, R., & Amado, F. (2007). Trametes versicolor growth and laccse induction with by-products of pulp and paper industry. Electronic Journal of Biotechnology, 10, 444–451.

    Article  CAS  Google Scholar 

  18. Weuster-Botz, D., Pramatorova, V., Spassov, G., & Wandrey, C. (1995). Use of a genetic algorithm in the development of a synthetic growth medium for Arthrobacter simplex with high hydrocortisone Δ1 – dehydrogenase activity. Journal of Chemical Technology and Biotechnology, 64, 386–392.

    Article  CAS  Google Scholar 

  19. Weuster-Botz, D., & Wandrey, C. (1995). Medium optimization by genetic algorithm for continuous production of formate dehydrogenase. Process Biochemistry, 30, 563–571.

    CAS  Google Scholar 

  20. Findrik, Z., Zelić, B., Bogdan, S., & Vasić-Rački, Đ. (2004). Model-based and experimental optimization using genetic algorithm. Chemical and Biochemical Engineering Quarterly, 18, 105–116.

    CAS  Google Scholar 

  21. Tišma, M., Žnidaršič-Plazl, P., Plazl, I., Vasić-Rački, Đ., & Zelić, B. (2010). Oxidation of coniferyl alcohol catalyzed by laccases from Trametes versicolor. Acta Chimica Slovenica, 57, 110–117.

    Google Scholar 

  22. Tišma, M., Sudar, M., Vasić-Rački, Đ., & Zelić, B. (2010). Mathematical model for Trametes versicolor growth in submerged cultivation. Bioprocess and Biosystems Engineering, 33, 749–758.

    Article  Google Scholar 

  23. Henriquez, C., & Lissi, E. (2002). Evaluation of the extinction coefficient of the ABTS derived radical cation. Boletín de la Sociedad Chilena de Química, 47, 563–566.

    Article  CAS  Google Scholar 

  24. Rodríguez Couto, S., Gundín, M., Lorenzo, M., & Sanromán, A. (2002). Screening of supports for laccase production Trametes versicolor in semi-solid-state conditions. Determination of optimal operation conditions. Process Biochemistry, 38, 249–255.

    Article  Google Scholar 

  25. Rancano, G., Lorenzo, M., Morales, N., Rodriquez Couto, S., & Sanroman, M. A. (2003). Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochemistry, 39, 467–473.

    Article  CAS  Google Scholar 

  26. Pazarlioğlu, N. K., Sariişik, M., & Telefoncu, A. (2005). Laccase: Production by Trametes versicolor and application to denim washing. Process Biochemistry, 40, 1673–1678.

    Article  Google Scholar 

  27. Aktas, N., Cicek, H., Unal, A. T., Kibarer, G., Kolankaya, N., & Tanyolac, A. (2001). Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Bioresource Technology, 80, 29–36.

    Article  CAS  Google Scholar 

  28. Tavares, A. P. M., Coelho, M. A. Z., Coutinho, J. A. P., & Xavier, A. M. R. B. (2005). Laccase improvement in submerged cultivation: induced production and kinetic modelling. Journal of Chemical Technology and Biotechnology, 80, 669–676.

    Article  Google Scholar 

  29. Tavares, A. P. M., Coelho, M. A. Z., Agapito, M. S. M., Coutinho, J. A. P., & Xavier, A. M. R. B. (2006). Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Applied Microbiology and Biotechnology, 134, 233–248.

    CAS  Google Scholar 

  30. Lorenzo, M., Moldes, D., Rodríguez Couto, S., & Sanromán, A. (2002). Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresource Technology, 82, 109–113.

    Article  CAS  Google Scholar 

  31. Elisashvili, V., & Kachlishvili, E. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology, 35, 1531–1538.

    Article  CAS  Google Scholar 

  32. Saparrat, M. C. N., Arambarri, A. M., & Balatti, P. (2007). Growth and extracellular laccase production in liquid cultures of Minimidochium parvum LPSC # 548 strain. Bulletin of the Botanical Society of Argentina, 42, 39–47.

    Google Scholar 

  33. Malarczyk, E., Jarosz-Wilkolazka, A., & Kochmanska-Rdest, J. (2003). Effect of low doses of guaiacol and ethanol on enzymatic activity of fungal cultures. Nonlinearity of Biology, Toxicology, and Medicine, 1, 167–168.

    Article  CAS  Google Scholar 

  34. Žnidaršič-Plazl, P., & Plazl, I. (2010). Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catalysis Today, 157, 315–320.

    Article  Google Scholar 

  35. Kaup, B.-A., Ehrich, K., Pescheck, M., & Schrader, J. (2008). Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnology and Bioengineering, 99, 491–498.

    Article  CAS  Google Scholar 

  36. Driouch, H., Sommer, B., & Wittmann, C. (2010). Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnology and Bioengineering, 105, 1059–1068.

    Google Scholar 

  37. Žnidaršič-Plazl, P. (2006). The influence of some engineering variables upon the morphology of Rhizopus nigricans in a stirred tank bioreactor. Chemical and Biochemical Engineering Quarterly, 20, 275–280.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Croatian Ministry of Science, Education, and Sports (contract grant number 125-1252086-2793) and by The National Foundation for Science, Higher Education, and Technological Development of the Republic of Croatia (Program NZZ Installation Grant). P. Žnidaršič Plazl was supported by grant P2-0191, provided by the Ministry of Higher Education, Science, and Technology of the Republic of Slovenia. The authors gratefully acknowledges Dr. D. Ravnjak for the provision of CaCO3, sludge, and pulps from Papirnica Vevče, Ljubljana, Slovenia; Mrs. I. Škraba for providing microorganism from the Microbial Culture Collection of the National Institute of Chemistry, Slovenia; Mrs. Mira Špehar for the provision of the waste from the malt industry and barley husk, Slavonija slad d.o.o., Nova Gradiška, Croatia; and Mr. Dean Pinjuh for the provision of sawdusts, Hrvatske šume d.o.o., Slavonski Brod, Croatia. The authors wish to thank Mrs. Nataša Car for the skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Zelić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tišma, M., Žnidaršič-Plazl, P., Vasić-Rački, Đ. et al. Optimization of Laccase Production by Trametes versicolor Cultivated on Industrial Waste. Appl Biochem Biotechnol 166, 36–46 (2012). https://doi.org/10.1007/s12010-011-9401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9401-1

Keywords

Navigation