Skip to main content
Log in

Multiple Responses Optimization and Modeling of Lipase Production by Rhodotorula mucilaginosa MTCC-8737 Using Response Surface Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Response surface methodology was employed to optimize culture medium for production of lipase with Rhodotorula sp. MTCC 8737. In the first step, a Plackett–Burman design was used to evaluate the effects of different inducers qualitatively. Of all the seven inducers tested, soybean oil showed significant influence on the lipase production. Further, response surface studies were conducted to quantitatively optimize by considering linear, interactive, and quadratic effects of test variables. A novel approach was proposed to optimize the lipase production system by optimizing the responses in terms of yield kinetics rather than optimizing the direct responses like lipase titer and biomass growth. The coefficient of determination (R 2) calculated for Y P/S (0.769), Y P/X (0.799), and Y X/S (0.847) indicated that the statistical model could explain 76.9%, 79.99%, and 84.7% of variability in the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Biotechnology Advances, 19, 627–662. doi:10.1016/S0734-9750(01)00086-6.

    Article  CAS  Google Scholar 

  2. Rajendran, A., & Thangavelu, V. (2007). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 82, 460–470. doi:10.1002/jctb.1691.

    Article  CAS  Google Scholar 

  3. Akhnazarova, S., & Kafarov, V. (1982). Experiment optimization in chemistry and chemical Engineering. Moscow: Mir Publications.

    Google Scholar 

  4. Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: process and product optimization using designed experiments (1st ed.). New York: Wiley-Interscience.

    Google Scholar 

  5. Khuri, A. I., & Cornell, J. A. (1987). Response surfaces: design and analysis. New York: Marcel Dekker Inc.

    Google Scholar 

  6. Ravichandra, P., Subhakar, C., Pavani, A., & Annapurna, J. (2008). Bioresource Technology, 99, 1776–1786. doi:10.1016/j.biortech.2007.03.041.

    Article  Google Scholar 

  7. Gupta, N., Sahai, V., & Gupta, R. (2007). Process Biochemistry, 42, 518–526. doi:10.1016/j.procbio.2006.10.006.

    Article  CAS  Google Scholar 

  8. Ravi, N. V., Ravichandra, P., & Lakshmi, N. M. (2008). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8315-z.

  9. Ravichandra, P., Mugeraya, G., & Annapurna, J. (2008). Applied Biochemistry and Biotechnology. (doi.org/10.1007/s12010-008-8229-9).

  10. Himabindu, M., Ravichandra, P., Vishalakshi, K., & Annapurna, J. (2006). Applied Biochemistry and Biotechnology, 134, 143–154. doi:10.1385/ABAB:134:2:143.

    Article  CAS  Google Scholar 

  11. Radhika, T., Kiran Kumar, D., Ravichandra, P., & Lakshmi Narasu, M. (2007). Applied Biochemistry and Biotechnology, 141, 187–201. doi:10.1007/BF02729061.

    Article  Google Scholar 

  12. Ravichandra, P., Subhakar, C., Vanajakshi, J., & Annapurna, J. (2008). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8293-1.

  13. Plackett, R. L., & Burman, J. P. (1946). Biometrika, 33, 305–325. doi:10.1093/biomet/33.4.305.

    Article  Google Scholar 

  14. Bursali, N., Ertunc, S., & Akay, B. (2006). Chemical Engineering and Processing, 45, 980–989. doi:10.1016/j.cep.2006.02.010.

    Article  CAS  Google Scholar 

  15. Winkler, U. K., & Stuckmann, M. (1979). Journal of Bacteriology, 138, 663–670.

    CAS  Google Scholar 

  16. Dubois, M. (1956). Analytical Chemistry, 28, 350–356. doi:10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  17. Montgomery, D. (2001). Design and analysis of experiments (5th ed.). New York: Wiley.

    Google Scholar 

  18. Cochran, W. G., & Cox, G. M. (1957). In: Experimental design (pp. 346–354). 2nd ed. New York: John Wiley and Sons.

  19. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). In: Statistics for experimenters (pp. 291–334). New York: John Wiley and Sons.

  20. He, Y. Q., & Tan, T. W. (2006). Journal of Molecular Catalysis. B, Enzymatic, 43, 9–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Dr. J.S. Yadav, Director, Indian Institute of Chemical Technology, Hyderabad, India for his encouragement. One of the authors, Subhakar Chennupati, thanks CSIR, New Delhi, India for SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annapurna Jetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chennupati, S., Potumarthi, R., Gopal Rao, M. et al. Multiple Responses Optimization and Modeling of Lipase Production by Rhodotorula mucilaginosa MTCC-8737 Using Response Surface Methodology. Appl Biochem Biotechnol 159, 317–329 (2009). https://doi.org/10.1007/s12010-009-8547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8547-6

Keywords

Navigation