Skip to main content
Log in

Investigation of the mechanical and thermal fatigue properties of hybrid sol–gel coatings applied to AA2024 substrates

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

This research article reports on the response of various hybrid sol–gel materials when applied as coatings to pre-treated bare AA2024 substrates, to mechanical indentation and cyclic thermal stimuli, in order to determine their usefulness in aeronautical applications. Three groups of hybrid sol–gel-coated samples were prepared using various organosilanes and transition metal oxides. The characterization of the materials revealed that the presence of the organic functionalities, especially the methacrylate group, has a noticeable effect on the mechanical response of the hybrid coatings, in particular their flexibility. The presence of methacrylate group in the cured material gives it ability to flex which influenced the thermal fatigue characteristics of the coatings which are able to withstand the cyclic temperature regimes of 82 ± 3 to −37 ± 3°C over 25 2 h cycles. This capability to maintain substrate protection is reflected in the corrosion resistance of the coatings as measured using electrochemical impedance spectroscopy and accelerated exposure testing. This result is important, as it shows that hybrid sol–gel materials can be used in applications where protecting a metal or ally substrate is paramount, especially in thermally volatile environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Colwell, JM, Khan, JH, Will, G, Fairfull-Smith, KE, Bottle, SE, George, GA, Trueman, A, “Prognostic Tools for Lifetime Prediction of Aircraft Coatings: Paint Degradation.” Adv. Mater. Res., 138 137–149 (2010)

    Article  Google Scholar 

  2. Tomsic, J, Hodder, R, Dictionary of Materials and Testing. Society of Automotive Engineers, Warrendale, PA (2000)

    Book  Google Scholar 

  3. Gunston, B, Cambridge Aerospace Dictionary, 2nd ed. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  4. Peery, DJ, “Go To 101 General Considerations Page.” Aircraft Structures. Dover, New York (1950)

    Google Scholar 

  5. Tobin, EF, Young, TM, Raps, D, Rohr, O, “Comparison of Liquid Impingement Results from Whirling Arm and Water-Jet Rain Erosion Test Facilities.” Wear, 271 (9–10) 2625–2631 (Jul. 2011)

    Article  Google Scholar 

  6. Sforza, PM, Commercial Aircraft Design Principles. Butterworth-Heinemann, Waltham, MA (2014)

    Google Scholar 

  7. Hegedus, CR, Spadafora, SJ, Pulley, DF, Eng, AT, Hirst, DJ, “Part 13: Specific Product Testing Aerospace and Aircraft Coatings.” Paint and Coating Testing Manual, 14th. ASTM, Philadelphia, PA (1995)

    Google Scholar 

  8. Riley, A, Aardema, B, Vosbury, P, Eiff, M, “Aircraft Cleaning and Corrosion Control.” Aviation Maintenance Technician Handbook. CreateSpace Independent, Washington, DC (2008)

    Google Scholar 

  9. Baek, Y, Frankel, GS, “Electrochemical Quartz Crystal Microbalance Study of Corrosion of Phases in AA2024.” J. Electrochem. Soc., 150 (1) B1 (2003)

    Article  Google Scholar 

  10. Zhou, X, Luo, C, Hashimoto, T, Hughes, AE, Thompson, GE, “Study of Localized Corrosion in AA2024 Aluminium Alloy Using Electron Tomography.” Corros. Sci., 58 299–306 (2012)

    Article  Google Scholar 

  11. Bierwagen, GP, Tallman, DE, “Choice and Measurement of Crucial Aircraft Coatings System Properties.” Prog. Org. Coat., 41 201–216 (2001)

    Article  Google Scholar 

  12. EU, “REACH.” Off. J. Eur. Union, L396 1–111 (2006)

    Google Scholar 

  13. Brinker, C, Scherer, G, Sol Gel Science: The Physics and Chemistry of Sol Gel Processing. Academic Press, Boston (1990)

    Google Scholar 

  14. Hench, LL, “The Sol–Gel Process.” Chem. Rev., 90 (1) 33–72 (Jan. 1990)

    Article  Google Scholar 

  15. Judeinstein, P, Sanchez, C, “Hybrid Organic-Inorganic Materials A Land of Multidisciplinarity Chemistry: Synthesis of Hybrid Materials.” J. Mater. Chem., 6 (4) 511–525 (1996)

    Article  Google Scholar 

  16. Wulpi, D, “Mechanical Properties.” Understanding How Components Fail. ASM, Metals Park, OH (2013)

    Google Scholar 

  17. Prakash, J, Tripathi, B, Ghosh, S, “Low Temperature Coating Deriving from Metal-Organic Precursors: An Economical and Environmentally Benign Approach.” Intelligent Coatings for Corrosion Control. Elsevier, Amsterdam (2014)

    Google Scholar 

  18. Aravamudhan, R, “Material Properties: Mechanical Creep.” Materials Selection and Applications in Mechanical Engineering, pp. 85–96. Industrial Press, New York (2006)

    Google Scholar 

  19. Jitianu, A, Britchi, A, Deleanu, C, Badescu, V, Zaharescu, M, “Comparative Study of the Sol–Gel Processes Starting with Different Substituted Si-Alkoxides.” J. Non Cryst. Solids, 319 (3) 263–279 (May 2003)

    Article  Google Scholar 

  20. Livage, J, Babonneau, F, Sanchez, C, “Sol–Gel Chemistry for Optical Materials.” In: Klein, L (ed.) Sol Gel Optics: Processing and Application, pp. 39–58. Springer, Berlin (1994)

    Chapter  Google Scholar 

  21. Zheludkevich, ML, Miranda, I, Ferreira, MGS, “Sol–Gel Coatings for Corrosion Protection of Metals.” J. Mater. Chem., 15 5099–5111 (2005)

    Article  Google Scholar 

  22. García, C, Ceré, S, Durán, A, “Bioactive Coatings Prepared by Sol–Gel on Stainless Steel 316L.” J. Non Cryst. Solids, 348 218–224 (2004)

    Article  Google Scholar 

  23. Latellaa, B, Barbéa, C, Cassidya, D, “Mechanical Stability and Decohesion of Sol–Gel Hybrid Coatings on Metallic Substrates.” In: Jornadas Sam/CONAMET/Simposio Materia (2003)

  24. Robertson, MA, Rudkin, RA, Parsonage, D, Atkinson, A, “Mechanical and Thermal Properties of Organic/Inorganic Hybrid Coatings.” J. Sol–Gel Sci. Technol., 26 291–295 (2003)

    Article  Google Scholar 

  25. Ballarre, J, López, DA, Cavalieri, AL, “Nano-indentation of hybrid silica coatings on surgical grade stainless steel.” Thin Solid Films, 516 (6) 1082–1087 (2008)

    Article  Google Scholar 

  26. Mehner, Dong, J, Prenzel, T, Datchary, W, Lucca, DA, “Mechanical and chemical properties of thick hybrid sol–gel silica coatings from acid and base catalyzed sols.” J. Sol–Gel Sci. Technol., 54 (3) 355–362 (2010)

    Article  Google Scholar 

  27. Latella, BA, Gan, BK, Barbé, CJ, Cassidy, DJ, “Nanoindentation Hardness, Young’ s Modulus, and Creep Behavior of Organic–Inorganic Silica-Based Sol–Gel Thin Films on Copper.” J. Mater. Res., 23 (9) 2357–2365 (2008)

    Article  Google Scholar 

  28. Salazar-Banda, GR, Moraes, SR, Motheo, AJ, Machado, SAS, “Anticorrosive Cerium-Based Coatings Prepared by the Sol–Gel Method.” J. Sol–Gel Sci. Technol., 52 (3) 415–423 (2009)

    Article  Google Scholar 

  29. Varma, R, Colreavy, J, Cassidy, J, “Effect of Organic Chelates on the Performance of Hybrid Sol–Gel Coated AA2024-T3 Aluminium Alloys.” Surf. Technol., 66 (4) 406–411 (2009)

    Google Scholar 

  30. Lamaka, SV, Zheludkevich, ML, Yasakau, KA, Serra, R, Poznyak, SK, Ferreira, MGS, “Nanoporous Titania Interlayer as Reservoir of Corrosion Inhibitors for Coatings with Self-healing Ability.” Prog. Org. Coat., 58 (2–3) 127–135 (2007)

    Article  Google Scholar 

  31. Etienne-Calas, S, Duri, A, Etienne, P, “Fracture Study of Organic–Inorganic Coatings Using Nanoindentation Technique.” J. Non Cryst. Solids, 344 (1–2) 60–65 (2004)

    Article  Google Scholar 

  32. Fedrizzi, L, Bergo, A, Deflorian, F, Valentinelli, L, “Assessment of Protective Properties of Organic Coatings by Thermal Cycling.” Prog. Org. Coat., 48 (2–4) 271–280 (2003)

    Article  Google Scholar 

  33. Bierwagen, GP, He, L, Li, J, Ellingson, L, Tallman, D, “Studies of a New Accelerated Evaluation Method for Coating Corrosion Resistance—Thermal Cycling Testing.” Prog. Org. Coat., 39 (1) 67–78 (2000)

    Article  Google Scholar 

  34. Varma, PCR, Periyat, P, Oubaha, M, McDonagh, C, Duffy, B, “Application of Niobium Enriched Ormosils as Thermally Stable Coatings For Aerospace Aluminium Alloys.” Surf. Coat. Technol., 205 (16) 3992–3998 (2011)

    Article  Google Scholar 

  35. Velten, D, Eisenbarth, E, Schanne, N, Breme, J, “Biocompatible Nb2O5 Thin Films Prepared by Means of the Sol–Gel Process.” J. Mater. Sci. Mater. Med., 15 (4) 457–461 (2004)

    Article  Google Scholar 

  36. Oliver, WC, Pharr, GM, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments.” J. Mater. Res., 7 (6) 1564 (1992)

    Article  Google Scholar 

  37. Beake, BD, Leggett, GJ, “Nanoindentation and Nano-scratch Testing of Uniaxially and Biaxially Drawn Poly(ethylene terephthalate) Film.” Polymer (Guildf), 43 319–327 (2002)

    Article  Google Scholar 

  38. Moghal, J, Bird, A, Harris, AH, Beake, BD, Gardener, M, Wakefield, G, “Nanomechanical Study of Thin Film Nanocomposite and PVD Thin Films on Polymer Substrates for Optical Applications.” J. Phys. D, 46 (48) 485303 (2013)

    Article  Google Scholar 

  39. Valentinelli, L, Vogelsang, J, Ochs, H, Fedrizzi, L, “Evaluation of Barrier Coatings by Cycling Testing.” Prog. Org. Coat., 45 (4) 405–413 (2002)

    Article  Google Scholar 

  40. Olivier, M, Poelman, M, “Use of Electrochemical Impedance Spectroscopy (EIS) for the Evaluation of Electrocoatings Performances,” intechopen.com, pp. 1–27

  41. Domingues, L, Fernandes, JC, Da Cunha Belo, M, Ferreira, MG, Guerra-Rosa, L, “Anodising of Al 2024-T3 in a Modified Sulphuric Acid/Boric Acid Bath for Aeronautical Applications.” Corros. Sci., 45 (1) 149–160 (2003)

    Article  Google Scholar 

  42. Lin, YC, Weng, YJ, Pen, DJ, Li, HC, “Deformation Model of Brittle and Ductile Materials Under Nano-indentation.” Mater. Des., 30 (5) 1643–1649 (2009)

    Article  Google Scholar 

  43. López, AJ, Rico, A, Rodríguez, J, Rams, J, “Tough Ceramic Coatings: Carbon Nanotube Reinforced Silica Sol–Gel.” Appl. Surf. Sci., 256 (21) 6375–6384 (2010)

    Article  Google Scholar 

  44. Sugahara, Y, Inoue, T, Kuroda, K, “29 Si NMR Study on Co-hydrolysis Processes inSi (OEt) 4-RSi (OEt) 3-EtOH–Water–HCl Systems (R = Me, Ph): Effect of Rgroups.” J. Mater. Chem., 7 53–59 (1997)

    Article  Google Scholar 

  45. Jitianu, A, Britchi, A, Badescu, V, “Influence of the Alkoxy Group of the Si-Alkoxides on the Sol–Gel Process and on the Structure of the Obtained Gels.” Rev. Roum., 52 93–99 (2007)

    Google Scholar 

  46. Ferchichi, A, Calas-Etienne, S, Smaïhi, M, Etienne, P, “Study of the Mechanical Properties of Hybrid Coating as a Function of Their Structures Using Nanoindentation.” J. Non Cryst. Solids, 354 (2–9) 712–716 (2008)

    Article  Google Scholar 

  47. Etienne-Calas, S, Duri, A, Etienne, P, “Fracture Study of Organic-Inorganic Coatings Using Nanoindentation Technique.” J. Non. Cryst. Solids, 344 (1–2) 60–65 (2004)

    Article  Google Scholar 

  48. Della Vecchia, P, Nicolosi, F, “Aerodynamic Guidelines in the Design and Optimization of New Regional Turboprop Aircraft.” Aerosp. Sci. Technol., 38 88–104 (2014)

    Article  Google Scholar 

  49. Agrawal, D, “Low Thermal Expansion Ceramics including the Complex Silicates.” In: Buschow, S, Jürgen Cahn, KH, Flemings, RW, Ilschner, MC, Kramer, B, Mahajan, EJ (eds.) Encyclopedia of Materials—Science and Technology. Elsevier, New York (2001)

    Google Scholar 

  50. Rosato, DV, Rosato, DV, “Design Reliability.” In: Raheja, D, Gullo, LJ (eds.) Plastics Engineered Product Design. Wiley, Hoboken, NJ (2003)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the European Union under the Seventh Framework Programme, Project 266029 “AEROMUCO”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Melia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melia, G., Moghal, J., Hicks, C. et al. Investigation of the mechanical and thermal fatigue properties of hybrid sol–gel coatings applied to AA2024 substrates. J Coat Technol Res 13, 1083–1094 (2016). https://doi.org/10.1007/s11998-016-9821-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9821-5

Keywords

Navigation