Skip to main content
Log in

Mechanical and chemical properties of thick hybrid sol–gel silica coatings from acid and base catalyzed sols

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel silica hybrid coatings from acid and base catalyzed sols were examined. The sol precursors were tetraethyl orthosilicate (TEOS) and methyltriethoxysilane (MTES). It is generally accepted that the type of catalyst has a significant impact on the micro-structure of the resulting polysilicates. Weakly branched polymers are formed in acid catalyzed sols and highly branched, compact, particle like polymers are formed in base catalyzed sols. The mechanical and chemical properties of sol–gel derived silica coatings from acid and base catalyzed sols were studied as a function of the heat treatment temperature and time. Hardness and elastic modulus were measured by micro indentation measurements. The chemical composition of both types of coatings was characterized by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang X, Qian M, Zeng X, Zhao Z et al (2008) J Sol Gel Sci Technol 45:103

    Article  CAS  Google Scholar 

  2. Shilova OA, Hashkovsky SV, Tarasyuk EV (2003) J Sol Gel Sci Technol 26:1131

    Article  CAS  Google Scholar 

  3. Chou TP, Chandrasekaran C, Cao GZ (2003) J Sol Gel Sci Technol 26:321

    Article  CAS  Google Scholar 

  4. Datchary W, Mehner A, Zoch H-W, Lucca DA, Klopfstein MJ, Ghisleni R, Grimme D, Brinksmeier E (2005) J Sol Gel Sci Technol 35:245

    Article  CAS  Google Scholar 

  5. Mehner A, Zoch H-W, Datchary W, Pongs G, Kunzmann H (2006) CIRP Ann 55(1):589

    Article  Google Scholar 

  6. Mehner A, Dong J, Hoja T, Prenzel T, Mutlugünes Y, Brinksmeier E, Lucca DA, Klaiber F (2010) Key Eng Mater 438:65–72

    Article  CAS  Google Scholar 

  7. Brinker CJ, Scherer GW (1990) Sol-gel science: the Physics and Chemistry of sol-gel processing, Chap. 3. Academic Press Inc, San Diego

    Google Scholar 

  8. ller RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  9. Schmidt H (1984) Mat Res Soc Symp Proc 32:327

    CAS  Google Scholar 

  10. Villegas MA, Aparicio M, Duran A (1997) J Non Cryst Solids 218:146

    Article  CAS  ADS  Google Scholar 

  11. Kozuka H, Kajimura M, Hirano T et al (2000) J Sol Gel Sci Technol 19:205

    Article  CAS  Google Scholar 

  12. Menning M, Jonschker G, Schmidt H (1997) German Patent DE 197 14 949 A1

  13. Mehner A, Datchary W, Bleil N, Zoch H-W, Klopfstein MJ, Lucca DA (2005) J Sol Gel Sci Technol 36:25

    Article  CAS  Google Scholar 

  14. Pethica JB, Hutchings R, Oliver WC (1983) Philos Mag A 48:593

    Article  CAS  ADS  Google Scholar 

  15. King RB (1987) Int J Solid and Struct 23:1657

    Article  MATH  Google Scholar 

  16. Briggs D (1998) Surface analysis of polymers by XPS and static SIMS. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. L’Ecuyer JL, Brassard C, Cardinal C et al (1976) J Appl Phys 47:381

    Article  ADS  Google Scholar 

  18. Bückle H (1959) Metallurgical Rev 4:49

    Google Scholar 

  19. Marschall DB, Noma T, Evans AG (1982) J Am Ceram Soc 65(10):175

    Article  Google Scholar 

  20. Scherer GW (1997) J Sol Gel Sci Technol 8:353

    CAS  Google Scholar 

  21. Kim KD, Ondarec G (1995) J Mat Sci Let 14:455

    CAS  Google Scholar 

  22. Roy SS, McCann R, Papakonstantinou P et al (2005) Thin Solid Films 482:145

    Article  CAS  ADS  Google Scholar 

  23. Lukaszewicz JP (1997) J Mater Sci 32:6063

    Article  CAS  Google Scholar 

  24. Moulder JF, Stickle WF et al (1992) Handbook of x-ray photoelectron spectroscopy. Perkin-Elmer Corp, Minnesota

    Google Scholar 

  25. Lucca DA, Ghisleni R, Nastasi M et al (2007) Nucl Instrum Methods Phys Res B 257:577

    Article  CAS  ADS  Google Scholar 

  26. Sorarù GD, d’Andrea G, Glisenti A (1996) Mater Lett 27:1

    Article  Google Scholar 

  27. Nocuń M, Leja E, Jedliński J, Najman J (2005) J Mol Struct 744–747:597

    Google Scholar 

  28. Almeida RM, Pantano CG (1990) J Appl Phys 68(8):4225

    Article  CAS  ADS  Google Scholar 

  29. Socrates G (1980) Infrared characteristic group frequencies. Wiley, Chichester

    Google Scholar 

  30. Murtagh MT, Shahriari MR, Krihak M (1998) Chem Mater 10:3862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the Transregional Collaborative Research Centre SFB/TR4 “Process Chains for the Replication of Complex Optical Elements”. The support of the Deutsche Forschungsgemeinschaft (DFG) through the SFB/TR4 and the National Science Foundation through Grant Nos. OISE-0352377 and OISE-0128050 is gratefully acknowledged. The Los Alamos National Laboratory portion of this work was supported by the Department of Energy, Office of Basic Energy Sciences, and the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehner, A., Dong, J., Prenzel, T. et al. Mechanical and chemical properties of thick hybrid sol–gel silica coatings from acid and base catalyzed sols. J Sol-Gel Sci Technol 54, 355–362 (2010). https://doi.org/10.1007/s10971-010-2203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2203-z

Keywords

Navigation