Skip to main content
Log in

A Gompertz Model Approach to Microbial Inactivation Kinetics by High-Pressure Processing Incorporating the Initial Counts, Microbial Quantification Limit, and Come-Up Time Effects

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

During come-up time (CUT), the time to reach a desired processing pressure, isobaric-isothermal conditions cannot be assumed in the estimation of kinetic parameters for the design of commercial high-pressure processing (HPP) treatments. Since CUT effects on microbial population, enzyme activity, and chemical concentration are often ignored, kinetic models incorporating the non-isobaric and non-isothermal conditions prevailing during CUT were the objective of this work. The analysis of peer-reviewed data on the HPP inactivation of bacteria (counts observations n = 919, 60 survival curves) and bacterial spores (n = 273, 12 curves) showed that a Gompertz model (GMPZ) approach is an effective alternative. The GMPZ parameter A was fixed as the difference between the initial population (log10 N o ) and the lower quantification limit of microbial counts (log10 N lim), while exponential equations were used to describe pressure effects on the lag time (λ) and the maximum inactivation rate (μmax). In low-acid media (pH > 4.5), λ decreased exponentially with pressure, allowing the identification of a theoretical pressure level (P λ) sufficient to initiate microbial inactivation during CUT. The parameter μmax exponentially increased with pressure for all evaluated datasets. Dynamic pressure effects during CUT were simplified by assuming isobaric conditions during CUT (t CUT), allowing to obtain GMPZ parameter estimates using only nonlinear regression (R 2 ∼ 0.938, σ 2 = 0.030–0.604). The proposed approach is a simpler, promising tool for a more informative analysis of the kinetics of microbial inactivation by HPP and should be further validated with additional experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adbdullatif, T., Shellhammer, T. H., Ahmed, Y., & Chism, G. W. (2003). Pressure death and tailing behavior of Listeria monocytogenes strains having different barotolerances. Journal of Food Protection, 66(11), 2057–2061.

    Article  Google Scholar 

  • Ahn, J.-H., & Balasubramaniam, V. (2007a). Inactivation kinetics of Listeria innocua ATCC 33090 at various temperature heating-up and pressure building-up rates. Food Science and Biotechnology, 16(2), 255–259.

    Google Scholar 

  • Ahn, J., & Balasubramaniam, V. (2007b). Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. Journal of Microbiology and Biotechnology, 17(4), 616–623.

    Google Scholar 

  • Ahn, J., & Balasubramaniam, V. M. (2014). Screening foods for processing-resistant bacterial spores and characterization of a pressure- and heat-resistant Bacillus licheniformis isolate. Journal of Food Protection, 77(6), 948–954.

    Article  Google Scholar 

  • Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113(3), 321–329.

    Article  CAS  Google Scholar 

  • Alcántara-Zavala, A. E. (2013). Evaluación del tratamiento de altas presiones hidrostáticas en leche cruda de vaca como método equivalente a la pasteurización. MSc Thesis. Universidad Autónoma de Querétaro, Querétaro, QRO, MX.

  • Avsaroglu, M. D., Buzrul, S., Alpas, H., Akcelik, M., & Bozoglu, F. (2006). Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. International Journal of Food Microbiology, 108(1), 78–83.

    Article  Google Scholar 

  • Balasubramanian, S., & Balasubramaniam, V. M. (2003). Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Research International, 36(7), 661–668.

    Article  Google Scholar 

  • Basak, S., & Ramaswamy, H. S. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.

    Article  CAS  Google Scholar 

  • Basak, S., Ramaswamy, H. S., & Piette, J. P. G. (2002). High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innovative Food Science and Emerging Technologies, 3, 223–231.

    Article  CAS  Google Scholar 

  • Baty, F., & Delignette-Muller, M.-L. (2004). Estimating the bacterial lag time: which model, which precision? International Journal of Food Microbiology, 91(3), 261–277.

    Article  Google Scholar 

  • Bermúdez-Aguirre, D., Guerrero-Beltrán, J. Á., Barbosa-Canovas, G., & Welti-Chanes, J. (2011). Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Science and Technology International, 17(6), 541–547.

    Article  Google Scholar 

  • Cole, M. B., Davis, K. W., Munro, G., Holyaok, C. D., & Kilsby, D. C. (1993). A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. Journal of Industrial Microbiology & Biotechnology, 12(3), 232–239.

    Article  Google Scholar 

  • Condron, R., Farrokh, C., Jordan, K., McClure, P., Ross, T., & Cerf, O. (2015). Guidelines for experimental design protocol and validation procedure for the measurement of heat resistance of microorganisms in milk. International Journal of Food Microbiology, 192, 20–25.

    Article  Google Scholar 

  • Chen, H., & Hoover, D. G. (2003). Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology, 87(1–2), 161–171.

    Article  Google Scholar 

  • Chen, H., & Hoover, D. G. (2004). Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative Food Science and Emerging Technologies, 5(3), 269–276.

    Article  CAS  Google Scholar 

  • Chotyakul, N., Velazquez, G., & Torres, J. A. (2011). Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. Journal of Food Engineering, 102(3), 247–256.

    Article  Google Scholar 

  • Denys, S., van Loey, A. M., & Hendrickx, M. E. (2000). A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innovative Food Science and Emerging Technologies, 1, 5–19.

    Article  CAS  Google Scholar 

  • Doona, C. J., Feeherry, F. E., Ross, E. W., Corradini, M. G., & Peleg, M. (2007). The quasi-chemical and Weibull distribution models of nonlinear inactivation kinetics of Escherichia coli ATCC 11229 by high pressure proocessing. In C. J. Doona, & F. E. Feeherry (Eds.), High pressure processing of foods (1 ed., IFT Press): Blackwell Publishing and the Institute of Food Technologists.

  • Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J. A., & Welti-Chanes, J. (2015). High hydrostatic pressure combined with mild temperature for the preservation of comminuted orange: effects on functional compounds and antioxidant activity. Food and Bioprocess Technology, 8, 1032–1044.

    Article  CAS  Google Scholar 

  • Gayán, E., Condón, S., Álvarez, I., Nabakabaya, M., & Mackey, B. (2013). Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure. Applied and Environmental Microbiology, 79(13), 4041–4047.

    Article  Google Scholar 

  • Gil, M. M., Miller, F. A., Brandão, T. R. S., & Silva, C. L. M. (2011). On the use of the Gompertz model to predict microbial thermal inactivation under isothermal and non-isothermal conditions. Food Engineering Reviews, 3(1), 17–25.

    Article  Google Scholar 

  • Guan, D., Chen, H., & Hoover, D. (2005). Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. International Journal of Food Microbiology, 104, 145–153.

    Article  Google Scholar 

  • Guerrero-Beltrán, J. Á., Barbosa-Cánovas, G., & Welti-Chanes, J. (2011a). High hydrostatic pressure effect on natural microflora, Saccharomyces cerevisiae, Escherichia coli, and Listeria Innocua in Navel orange juice. International Journal of Food Engineering, 7(1), Article 14.

  • Guerrero-Beltrán, J. Á., Barbosa-Cánovas, G., & Welti-Chanes, J. (2011b). High hydrostatic pressure effect on Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in pear nectar. Journal of Food Quality, 34(6), 371–378.

    Article  Google Scholar 

  • Hartmann, C., & Delgado, A. (2002). Numerical simulation of convective and diffusive transport effects on high-pressure-induced inactivation process. Biotechnology and Bioengineering, 79(1), 94–104.

    Article  CAS  Google Scholar 

  • Hiremath, N. D., & Ramaswamy, H. S. (2012). High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. Journal of Food Processing and Preservation, 36(2), 113–125.

    Article  Google Scholar 

  • Hnosko, J., San-Martín Gonzalez, M. F., & Clark, S. (2012). High-pressure processing inactivates Listeria innocua yet compromises queso fresco crumbling properties. Journal of Dairy Science, 95(9), 4851–4862.

    Article  CAS  Google Scholar 

  • Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science and Emerging Technologies, 31, 14–27.

    Article  Google Scholar 

  • Jung, L.-S., Lee, S. H., Kim, S., Cho, Y., & Ahn, J. (2014). Effect of high-pressure post-packaging pasteurization on microbiological quality of ready-to-use-vegetables. Journal of Food Processing and Preservation, 38(1), 406–412.

    Article  Google Scholar 

  • Knoerzer, K., Buckow, R., Sanguansri, P., & Versteeg, C. (2010). Adiabatic compression heating coefficients for high-pressure processing of water, propylene-glycol and mixtures—a combined experimental and numerical approach. Journal of Food Engineering, 96(2), 229–238.

    Article  CAS  Google Scholar 

  • Koseki, S., & Yamamoto, K. (2007). A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116(2), 275–282.

    Article  CAS  Google Scholar 

  • Koutchma, T., Guo, B., Patazca, E., & Parisi, B. (2005). High presure-high temperature sterilization: from kinetic analysis to process verification. Journal of Food Process Engineering, 28, 610–629.

    Article  Google Scholar 

  • Mañas, P., & Pagán, R. (2005). Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology, 98(6), 1387–1399.

    Article  Google Scholar 

  • Maturin, L., & Peeler, J. T. (2001). Aerobic plate count. In U. S. F. a. D. Administration (Ed.), Bacteriological analytical method (8° ed.).

  • Mújica-Paz, H., Valdez-Fragoso, A., Tonello Samson, C., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4(6), 969–985.

    Article  Google Scholar 

  • Mussa, D. M., Ramaswamy, H. S., & Smith, J. P. (1999). High pressure destruction kinetics of Listeria monocytogenes Scott A in raw milk. Food Research International, 31(5), 343–350.

    Article  Google Scholar 

  • Palou, E., López-Malo, A., Barbosa-Cánovas, G., Welti-Chanes, J., & Swanson, B. G. (1997). Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. LWT-Food Science and Technology, 30, 703–708.

    Article  CAS  Google Scholar 

  • Pandey, R. K., Ramaswamy, H. S., & Idziak, E. (2003). High pressure destruction kinetics of indigenous microflora and Escherichia coli in raw milk at two temperatures. Journal of Food Process Engineering, 26, 265–283.

    Article  Google Scholar 

  • Paredes-Sabja, D., Gonzalez, M., Sarker, M. R., & Torres, J. A. (2007). Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. Journal of Food Science, 72(6), M202–M206.

    Article  CAS  Google Scholar 

  • Patazca, E., Koutchma, T., & Balasubramaniam, V. M. (2007). Quasi-adiabatic temperature increase during high pressure processing of selected foods. Journal of Food Engineering, 80(1), 199–205.

    Article  Google Scholar 

  • Peleg, M. (2003). Microbial survival curves: interpretation, mathematical modeling and utilization. Comments on Theoretical Biology, 8, 357–387.

    Article  Google Scholar 

  • Peleg, M. (2006). Generating nonisothermal heat inactivation curves with difference equations in real time (incremental method). In Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactvation, CRC series in contemporary food Science (1st ed., pp. 95–110). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Peleg, M., Engel, R., Gonzalez-Martinez, C., & Corradini, M. G. (2002). Non-Arrhenius and non-WLF kinetics in food systems. Journal of the Science of Food and Agriculture, 82(12), 1346–1355.

    Article  CAS  Google Scholar 

  • Peleg, M., & Normand, M. D. (2004). Calculating microbial survival parameters and predicting survival curves from non-isothermal inactivation data. Critical Reviews in Food Science and Nutrition, 44(6), 409–418.

    Article  Google Scholar 

  • Rademacher, B., Werner, F., & Pehl, M. (2002). Effect of the pressurizing ramp on the inactivation of Listeria innocua considering thermofluiddynamical processes. Innovative Food Science and Emerging Technologies, 3(1), 19–24.

    Article  Google Scholar 

  • Ramaswamy, H. S., Riahi, E., & Idziak, E. (2003). High-pressure destruction kinetics of E. coli (29055) in apple juice. Journal of Food Science, 68(5), 1750–1756.

    Article  CAS  Google Scholar 

  • Ramaswamy, H. S., & Shao, Y. (2010). High pressure destruction kinetics of Clostridium sporogenes spores in salmon slurry at elevated temperatures. International Journal of Food Properties, 13, 1074–1091.

    Article  Google Scholar 

  • Ramaswamy, H. S., Shao, Y., & Zhu, S. (2010). High-pressure destruction kinetics of Clostridium sporogenes ATCC 11437 spores in milk at elevated quasi-isothermal conditions. Journal of Food Engineering, 96(2), 249–257.

    Article  Google Scholar 

  • Ramaswamy, H. S., Zaman, S. U., & Smith, J. P. (2008). High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. Journal of Food Engineering, 87(1), 99–106.

    Article  Google Scholar 

  • Ratphitagsanti, W., Ahn, J., Balasubramaniam, V. M., & Yousef, A. (2009). Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure assisted thermal processing. Journal of Food Protection, 72(4), 775–782.

    Article  Google Scholar 

  • Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT-Food Science and Technology, 44(5), 1251–1260.

    Article  CAS  Google Scholar 

  • Salgado, D., Torres, J. A., Welti-Chanes, J., & Velazquez, G. (2011). Effect of input data variability on estimations of the equivalent constant temperature time for microbial inactivation by HTST and retort thermal processing. Journal of Food Science, 76(6), E495–E502.

    Article  CAS  Google Scholar 

  • Samaranayake, C. P., & Sastry, S. K. (2010). In situ measurement of pH under high pressure. The Journal of Physical Chemistry B, 114(42), 13326–13332.

    Article  CAS  Google Scholar 

  • Samaranayake, C. P., & Sastry, S. K. (2013). In-situ pH measurement of selected liquid foods under high pressure. Innovative Food Science and Emerging Technologies, 17(0), 22–26.

    Article  CAS  Google Scholar 

  • Santillana Farakos, S. M., & Zwietering, M. H. (2011). Data analysis of the inactivation of foodborne microorganisms under high hydrostatic pressure to establish global kinetic parameters and influencing factors. Journal of Food Protection, 74(12), 2097–2106.

    Article  Google Scholar 

  • Sastry, S. K. (2016). Toward a philosophy and theory of volumetric nonthermal processing. Journal of Food Science, 81(6), E1431–E1446.

    Article  CAS  Google Scholar 

  • Saucedo-Reyes, D., Marco-Celdrán, A., Pina-Pérez, M. C., Rodrigo, D., & Martínez-López, A. (2009). Modeling survival of high hydrostatic pressure treated stationary- and exponential-phase Listeria innocua cells. Innovative Food Science and Emerging Technologies, 10, 135–141.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: Kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56–88.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., Franco-Vega, A., Escobedo-Avellaneda, Z., Fuentes, C., Torres, J. A., Dibildox-Alvarado, E., et al. (2016a). The logistic-exponential Weibull model as a tool to predict natural microflora inactivation of Agave mapsiaga aguamiel (agave sap) by high pressure treatments. Journal of Food Processing and Preservation, Available online. doi:10.1111/jfpp.12816.

    Google Scholar 

  • Serment-Moreno, V., Fuentes, C., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2015). Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food and Bioprocess Technology, 8(6), 1244–1257.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., Torres, J. A., Fuentes, C., Ríos-Alejandro, J. G., Barbosa-Cánovas, G., & Welti-Chanes, J. (2016b). Limitations of the log-logistic model for the analysis of sigmoidal microbial inactivation data for high pressure processing (HPP). Food and Bioprocess Technology, 9(5), 901–916.

    Article  Google Scholar 

  • Spinner, J. (2014). Hiperbaric “can’t complain” about growth in HPP market. Food Production Daily, Retrieved May 12, 2014, from http://www.foodproductiondaily.com/Processing/Hiperbaric-can-t-complain-about-growth-in-HPP-market.

  • Syed, Q.-A., Reineke, K., Saldo, J., Buffa, M., Guamis, B., & Knorr, D. (2012). Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures. Food Control, 25(1), 361–367.

    Article  Google Scholar 

  • Syed, Q. A., Buffa, M., Guamis, B., & Saldo, J. (2013). Lethality and injuring the effect of compression and decompression rates of high hydrostatic pressure on Escherichia coli O157:H7 in different matrices. High Pressure Research, 33(1), 64–72.

    Article  Google Scholar 

  • Syed, Q. A., Buffa, M., Guamis, B., & Saldo, J. (2014). Effect of compression and decompression rates of high hydrostatic pressure on inactivation of Staphylococcus aureus in different matrices. Food and Bioprocess Technology, 7(4), 1202–1207.

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza, V., Escobedo-Avellaneda, Z., Valdez-Fragoso, A., Mújica-Paz, H., & Welti-Chanes, J. (2014). Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (PME) inactivation in comminuted orange. Journal of the Science of Food and Agriculture, 95(12), 2438–2444.

    Article  Google Scholar 

  • U. S. Food and Drug Administration. (2014). Kinetics of microbial inactivation for alternative food processing technologies—high pressure processing (p. 55). Silver Spring, MD: United States Food and Drug Administration.

    Google Scholar 

  • Vojdani, J. D., Beuchat, L. R., & Tauxe, R. V. (2008). Juice-associated outbreaks of human illness in the United States, 1995 through 2005. Journal of Food Protection, 71(2), 356–364.

    Article  Google Scholar 

  • Yao, J., Zhou, B., Wang, R., Wang, T., Hu, X., Liao, X., et al. (2015). Inactivation of Staphylococcus aureus by high hydrostatic pressure in saline solution and meat slurry with different initial inoculum levels. Food and Bioproducts Processing, 94, 592–600.

    Article  CAS  Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Tecnológico de Monterrey (Research chair funds GEE 1A01001 and CDB081) and México’s CONACYT Scholarship Program (Grant no. 227790).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Antonio Torres or Jorge Welti-Chanes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serment-Moreno, V., Fuentes, C., Guerrero-Beltrán, J.Á. et al. A Gompertz Model Approach to Microbial Inactivation Kinetics by High-Pressure Processing Incorporating the Initial Counts, Microbial Quantification Limit, and Come-Up Time Effects. Food Bioprocess Technol 10, 1495–1508 (2017). https://doi.org/10.1007/s11947-017-1916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1916-1

Keywords

Navigation