Skip to main content

Advertisement

Log in

The Potential Application of Antimicrobial Silver Polyvinyl Chloride Nanocomposite Films to Extend the Shelf-Life of Chicken Breast Fillets

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Silver (Ag) nanoparticles (NPs) were synthesised and characterised, and their antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, Pseudomonas fluorescens and microflora derived from raw chicken, beef or cooked ham was determined. Polyvinyl chloride (PVC) films or antimicrobial Ag/PVC nanocomposite films were manufactured via a solvent casting method and the mechanical and thermal properties of these materials determined. Manufactured antimicrobial Ag/PVC nanocomposite films were used to wrap chicken breast fillets, followed by modified atmosphere packaging (using conventional laminates and employing a gas mix of 60 % N2/40 % CO2), and compared against PVC control films. In general, Gram-negative bacteria were more sensitive to Ag NPs than Gram-positive bacteria and microflora isolated from meat products were more resistant than pure culture bacteria. However, the most sensitive bacteria to Ag NPs were Pseudomonas fluorescens. No significant differences (p > 0.05) in tensile strength and elongation at break were observed, but glass transition temperatures (T g) of Ag/PVC nanocomposite films were lower (p < 0.05) when compared to PVC control films. Results also indicated that antimicrobial Ag/PVC nanocomposite films significantly (p < 0.05) extended the shelf-life of chicken breast fillets and reduced lipid oxidation of chicken breast fillets compared to PVC-wrapped equivalents. Overall, results indicated that antimicrobial Ag/PVC nanocomposite films can potentially be used as antimicrobial packaging for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajitha, B., Ashok Kumar Reddy, Y., & Sreedhara Reddy, P. (2015). Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technology, 269, 77110–117.

  • Altan, M., & Yildirim, H. (2012). Mechanical and antibacterial properties of injection molded Polypropylene/TiO2 nano-composites: effects of surface modification. Journal of Materials Science & Technology, 28(8), 686–692.

    Article  CAS  Google Scholar 

  • An, J., Zhang, M., Wang, S., & Tang, J. (2008). Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Science and Technology, 41(6), 1100–1107.

    Article  CAS  Google Scholar 

  • Anyaogu, K. C., Fedorov, A. V., & Neckers, D. C. (2008). Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir : The ACS Journal of Surfaces and Colloids, 24(8), 4340–6.

    Article  CAS  Google Scholar 

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3, 113–126.

    Article  CAS  Google Scholar 

  • ASTM. (2002). Standard test method for tensile properties of thin plastic sheeting. Designation: D882-02. In Annual book of American standards testing methods standard (pp. 168–177). Philadelphia.

  • Azevedo, A. N., Buarque, P. R., Cruz, E. M. O., Blank, A. F., Alves, P. B., Nunes, M. L., & Santana, L. C. L. D. A. (2014). Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control, 43, 1–9.

    Article  CAS  Google Scholar 

  • Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 1–10.

  • Badiou, W., Lavigne, J.-P., Bousquet, P.-J., O’Callaghan, D., Marès, P., & de Tayrac, R. (2011). In vitro and in vivo assessment of silver-coated polypropylene mesh to prevent infection in a rat model. International Urogynecology Journal, 22(3), 265–272.

    Article  Google Scholar 

  • Becerra, A., Rodriguez-Llamazares, S., Carrasco, C., Diaz-Visurraga, J., Riffo, C., & Mondaca, M. (2012). Preparation of poly(vinyl chloride)/copper nanocomposite films with reduced bacterial adhesion. High Performance Polymers, 25(1), 51–60.

    Article  Google Scholar 

  • Bolton, D. J., Meredith, H., Walsh, D., & McDowell, D. A. (2013). The effect of chemical treatments in laboratory and broiler plant studies on the microbial status and shelf-life of poultry. Food Control, 36(1), 230–237.

    Article  Google Scholar 

  • Chen, D., Qiao, X., Qiu, X., & Chen, J. (2009). Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. Journal of Materials Science, 44(4), 1076–1081.

    Article  CAS  Google Scholar 

  • Chen, Z., Zhu, C., Zhang, Y., Niu, D., & Du, J. (2010). Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biology and Technology, 58(3), 232–238.

    Article  CAS  Google Scholar 

  • Cheng, Q., Li, C., Pavlinek, V., Saha, P., & Wang, H. (2006). Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Applied Surface Science, 252(12), 4154–4160.

    Article  CAS  Google Scholar 

  • Chinkamonthong, R., Kositchaiyong, A., & Sombatsompop, N. (2012). Effects of thermal and UV aging on antibacterial properties of linear low-density polyethylene and poly(vinyl chloride) films containing nano-silver colloid. Journal of Plastic Film and Sheeting, 29(2), 144–162.

    Article  Google Scholar 

  • CLSI. (2007). Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A9 (9th ed.). Clinical and Laboratory Standards Institute, Wayne, PA, USA: CLSI publication.

  • Costa, C., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. International Journal of Food Microbiology, 148(3), 164–7.

    CAS  Google Scholar 

  • Cruz-Romero, M., Kelly, A. L., & Kerry, J. P. (2007). Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, 8(1), 30–38.

    Article  CAS  Google Scholar 

  • Cruz-Romero, M. C., Murphy, T., Morris, M., Cummins, E., & Kerry, J. P. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34(2), 393–397.

    Article  CAS  Google Scholar 

  • Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry—recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30–46.

    Article  CAS  Google Scholar 

  • Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2013). Migration and exposure assessment of silver from a PVC nanocomposite. Food Chemistry, 139(1–4), 389–397.

    Article  CAS  Google Scholar 

  • EC. (2002). Commission Directive 2002/72/EC of 6 August 2002 relating to plastic materials and articles intended to come into contact with foodstuffs. Official Journal of the European Communities, 18–58.

  • Egger, S., Lehmann, R. P., Height, M. J., Loessner, M. J., & Schuppler, M. (2009). Antimicrobial properties of a novel silver-silica nanocomposite material. Applied and Environmental Microbiology, 75(9), 2973–6.

    Article  CAS  Google Scholar 

  • Elashmawi, I. S., Hakeem, N. A., Marei, L. K., & Hanna, F. F. (2010). Structure and performance of ZnO/PVC nanocomposites. Physica B: Condensed Matter, 405(19), 4163–4169.

    Article  CAS  Google Scholar 

  • Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742–748.

    Article  CAS  Google Scholar 

  • Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3–4), 408–413.

    Article  CAS  Google Scholar 

  • Espinosa-Cristóbal, L. F., Martínez-Castañón, G. A., Martínez-Martínez, R. E., Loyola-Rodríguez, J. P., Patiño-Marín, N., Reyes-Macías, J. F., & Ruiz, F. (2009). Antibacterial effect of silver nanoparticles against Streptococcus mutans. Materials Letters, 63(29), 2603–2606.

    Article  Google Scholar 

  • Fernández-Pan, I., Carrión-Granda, X., & Maté, J. I. (2014). Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control, 36(1), 69–75.

    Article  Google Scholar 

  • FMI (2015). Next Generation Packaging Market: Global Industry Analysis and Opportunity Assessment 2015–2025. Retrieved October 6, 2015, from http://www.reuters.com/article/2015/09/09/ny-fmi-idUSnBw096260a+100+BSW20150909

  • Gatellier, P., Gomez, S., Gigaud, V., Berri, C., Bihan-Duval, E. L., & Santé-Lhoutellier, V. (2007). Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Science, 76(3), 543–547.

    Article  CAS  Google Scholar 

  • Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., Jimenez de Aberasturi, D., de Larramendi, I. R., Rojo, T., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.

    Article  CAS  Google Scholar 

  • Hanemann, T., & Szabó, D. V. (2010). Polymer-nanoparticle composites: from synthesis to modern applications. Materials, 3(6), 3468–3517.

    Article  CAS  Google Scholar 

  • Hannon, J. C., Cummins, E., Kerry, J., Cruz-Romero, M., & Morris, M. (2015). Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science & Technology, 43(1), 43–62.

    Article  CAS  Google Scholar 

  • ICMFS. (1990). Microorganisms in foods 2. Sampling for microbiological analysis: Principles and specific applications. In International Commission on Microbiological Specifications for Foods (2nd ed., pp. 148–156). Blackwell Scientific Publications.

  • Ilg, Y., & Kreyenschmidt, J. (2011). Effects of food components on the antimicrobial activity of polypropylene surfaces containing silver ions (Ag+). International Journal of Food Science & Technology, 46(7), 1469–1476.

    Article  CAS  Google Scholar 

  • Incoronato, A. L., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. Journal of Dairy Science, 94(4), 1697–704.

    Article  CAS  Google Scholar 

  • Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Fresh Meats and Poultry. In J. M. Jay, M. J. Loessner, & D. A. Golden (Eds.), Modern Food Microbiology (7th edn., pp. 63–100). US: Springer.

  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., & Siegrist, H. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science and Technology, 45(9), 3902–3908.

    Article  CAS  Google Scholar 

  • Kamrupi, I. R., Phukon, P., Konwer, B. K., & Dolui, S. K. (2011). Synthesis of silver-polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. Journal of Supercritical Fluids, 55(3), 1089–1094.

    Article  CAS  Google Scholar 

  • Kanmani, P., & Rhim, J.-W. (2014). Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry, 148, 162–9.

    Article  CAS  Google Scholar 

  • Kim, K.-J., Sung, W. S., Suh, B. K., Moon, S.-K., Choi, J.-S., Kim, J. G., & Lee, D. G. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals, 22(2), 235–242.

    Article  CAS  Google Scholar 

  • Kumar, R., Howdle, S., & Münstedt, H. (2005). Polyamide/silver antimicrobials: effect of filler types on the silver ion release. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 75(2), 311–9.

    Article  Google Scholar 

  • Lara, H. H., Ayala-Nuñez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 8, 1.

    Article  Google Scholar 

  • Latou, E., Mexis, S. F., Badeka, A. V., Kontakos, S., & Kontominas, M. G. (2014). Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT - Food Science and Technology, 55(1), 263–268.

    Article  CAS  Google Scholar 

  • Lianou, A., & Koutsoumanis, K. P. (2013). Strain variability of the behavior of foodborne bacterial pathogens: a review. International Journal of Food Microbiology, 167(3), 310–321.

    Article  Google Scholar 

  • Liu, F., Liu, H., Li, X., Zhao, H., Zhu, D., Zheng, Y., & Li, C. (2012). Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Applied Surface Science, 258(10), 4667–4671.

    Article  CAS  Google Scholar 

  • Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551.

    Article  CAS  Google Scholar 

  • Mexis, S. F., Chouliara, E., & Kontominas, M. G. (2012). Shelf life extension of ground chicken meat using an oxygen absorber and a citrus extract. LWT - Food Science and Technology, 49(1), 21–27.

    Article  CAS  Google Scholar 

  • Moloney, C., Cruz-Romero, M., Morris, M., Cummins, E., & Kerry, J. P. (2012). Effect of metal nanoparticles on the mechanical properties of low-density polyethylene-based and polyvinylchloride-based nanocomposite films. In 2 nd international meeting on materials/bioproduct interactions (MATBIM). France: Dijon.

  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., & Behra, R. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42(23), 8959–8964.

    Article  CAS  Google Scholar 

  • NCCLS. (2000). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically—Fifth edition: Approved standard M7-A5. (NCCLS, Ed.). Wayne, PA, USA.

  • Olad, A., Behboudi, S., & Entezami, A. A. (2013). Effect of polyaniline as a surface modifier of TiO2 nanoparticles on the properties of polyvinyl chloride/TiO2 nanocomposites. Chinese Journal of Polymer Science, 31(3), 481–494.

    Article  CAS  Google Scholar 

  • Palza, H. (2015). Antimicrobial polymers with metal nanoparticles. International Journal of Molecular Sciences, 16(1), 2099–2116.

    Article  CAS  Google Scholar 

  • Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., & Albertí, P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123, 104–112.

    Article  CAS  Google Scholar 

  • Park, H.-J., Kim, J. Y., Kim, J., Lee, J.-H., Hahn, J.-S., Gu, M. B., & Yoon, J. (2009). Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Research, 43(4), 1027–32.

    Article  CAS  Google Scholar 

  • Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13–14), 1803–1815.

    Article  CAS  Google Scholar 

  • Peterson, R. D., Cunningham, B. T., & Andrade, J. E. (2014). A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosensors and Bioelectronics, 56, 320–327.

    Article  CAS  Google Scholar 

  • Petrou, S., Tsiraki, M., Giatrakou, V., & Savvaidis, I. N. (2012). Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. International Journal of Food Microbiology, 156(3), 264–271.

    Article  CAS  Google Scholar 

  • Pin, C., & Baranyi, J. (1998). Predictive models as means to quantify the interactions of spoilage organisms. International Journal of Food Microbiology, 41(1), 59–72.

    Article  CAS  Google Scholar 

  • Ren, G., Hu, D., Cheng, E. W. C., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–90.

    Article  CAS  Google Scholar 

  • Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., & Picci, N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 21(11), 1425–1435.

    Article  Google Scholar 

  • Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327–335.

    Article  CAS  Google Scholar 

  • Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–16.

    Article  CAS  Google Scholar 

  • Seil, J. T., & Webster, T. J. (2011). Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomaterialia, 7(6), 2579–84.

    Article  CAS  Google Scholar 

  • Shameli, K., Ahmad, M. B., Jazayeri, S. D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., & Gharayebi, Y. (2012). Investigation of antibacterial properties silver nanoparticles prepared via green method. Chemistry Central Journal, 6(1), 73.

    Article  CAS  Google Scholar 

  • Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., & Zhang, T. (2014). Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angewandte Chemie, 126(1), 254–258.

    Article  Google Scholar 

  • Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1–2), 83–96.

    Article  CAS  Google Scholar 

  • Silva, E., M. Saraiva, S., P. Miguel, S., & Correia, I. J. (2014). PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes. Journal of Nanoparticle Research, 16(11).

  • Siu, G. M., & Draper, H. H. (1978). A survey of malonaldehyde content of retail meats and fish. Journal of Food Science, 43, 1147–1149.

    Article  CAS  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–82.

    Article  CAS  Google Scholar 

  • Zhou, L., Lv, S., He, G., He, Q., & Shi, B. (2011). Effect of PE/Ag2O nano-packaging on the quality of apple slices. Journal of Food Quality, 34(3), 171–176.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author, Azlin-Hasim, would like to thank the Ministry of Education of Malaysia (MOE) for the PhD scholarship. The funding for this research was provided under the National Development, through the Food Institutional Research Measure (FIRM) administered by the Department of Agriculture, Fisheries and Food.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Kerry.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azlin-Hasim, S., Cruz-Romero, M.C., Morris, M.A. et al. The Potential Application of Antimicrobial Silver Polyvinyl Chloride Nanocomposite Films to Extend the Shelf-Life of Chicken Breast Fillets. Food Bioprocess Technol 9, 1661–1673 (2016). https://doi.org/10.1007/s11947-016-1745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1745-7

Keywords

Navigation