Skip to main content
Log in

Rate-Controlling Mechanisms in the Photo-degradation of 5-Hydroxymethylfurfural

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Rate-controlling mechanisms in the photo-degradation of 5-hydroxymethylfurfural (HMF) were studied applying kinetic and thermodynamic compensations. Aqueous solutions of HMF were prepared at a concentration of 100 mg L−1 and at pH values of 3, 3.4, 4, and 5. The UV irradiation of samples was performed in an installation consisting of a black chamber containing the reactor and a mid-pressure mercury lamp with emission wavelengths between 250 and 740 nm. Every sample was irradiated at 12, 25, 35, and 45 °C for 120 min, analyzing their HMF content each 10 min. The photo-degradation data fitted well to zero-order kinetic model, and the constant values were used to study whether the kinetic and thermodynamic compensation could be applied. The isokinetic temperature was very similar for kinetic compensation (TB = 278.0 K) and thermodynamic compensation (TB = 277.8 K). Applying the Leffler’s criterion, the HMF photo-degradation was entropically controlled, probably as a consequence of hydrophobic interactions. In order to check the entropical control, two experiments were repeated at pH 3 but avoiding agitation. As the new obtained kinetic constants were highly different from the values previously obtained using agitation, it can be concluded that the HMF photo-degradation is an entropy-controlled process and can be speeded up by changing non-thermal parameters, like agitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C HMF :

HMF concentration (mg L−1)

C HMF 0 :

Initial HMF concentration (mg L−1)

E a :

Activation energy (J mol−1)

∆G B :

Change in Gibbs free energy at the isoequilibrium point (J mol−1)

∆H :

Change in enthalpy (J mol−1)

h :

Planck’s constant (J s)

HMF:

HMF molecule

K B :

Boltzmann’s constant (J K−1)

k eq :

Equilibrium kinetic constant (mol L−1 s−1)

K 0 :

Frequency factor (mol L−1 s−1)

k HMF :

Zero-order kinetic constant on the relation between C HMF and time (mol L−1 s−1)

N:

Total number of treatments

R:

Universal gas constant (J mol−1 K−1)

∆S :

Change in entropy (J mol−1 K−1)

T :

Absolute temperature (K)

T B :

Isokinetic temperature (K)

T hm :

Harmonic mean temperature (K)

t:

Time (s)

References

  • Aguilar, K., Garvin, A., Azuara, E., & Ibarz, A. (2015). Modelling of 5-hydroxymethylfurfural photo-degradation by UV irradiation. Influence of temperature and pH. Food Research International, 71, 165–173.

    Article  CAS  Google Scholar 

  • Albala-Hurtado, S., Veciana-Nogues, M. T., Marine-Font, A., & Vidal-Carou, M. C. (1998). Changes in furfural compounds during storage of infant milks. Journal of Agricultural and Food Chemistry, 46(8), 2998–3003.

    Article  CAS  Google Scholar 

  • Azuara, E., & Beristain, C. I. (2006). Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technology, 24(11), 1501–1507.

    Article  CAS  Google Scholar 

  • Azuara, E., & Beristain, C. I. (2007). Thermodynamic and kinetic study of water adsorption on whey protein. Revista Mexicana de Ingenieria Quimica, 6(3), 359–365.

    Google Scholar 

  • Barnes, R., Vogel, H., & Gordon, J. (1969). Temperature of compensation: significance for virus inactivation. Proceedings of the National Academy of Sciences (U.S.A.), 62, 263–270.

    Article  CAS  Google Scholar 

  • Beristain, C. I., García, H. S., & Azuara, E. (1996). Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, 30(3), 405–415.

    Article  Google Scholar 

  • Beristain, C. I., Vernon-Carter, E. J., & Azuara, E. (2011). Thermodynamic and kinetic criteria to study the stability of dried foods. In M. A. Coneau (Ed.), New topics in food engineering (pp. 150–170). New York: Nova Science Publishers, Inc.

    Google Scholar 

  • Chandler, D. (2002). Two faces of water. Nature, 417, 491.

    Article  CAS  Google Scholar 

  • Chodera, J. D., & Mobley, D. L. (2013). Entropy–enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annual Review of Biophysics, 42(1), 1–19.

    Article  Google Scholar 

  • Codex Alimentarius Commission, Codex standard for honey, CODEX STAN 12–1981; Food and Agriculture Organization of the United Nations and the World Health Organization, Rome, Italy, 2001.

  • Delgado-Andrade, C., Rufián-Henares, J. A., & Morales, F. J. (2009). Hydroxymethylfurfural in commercial biscuits marketed in Spain. Journal of Food and Nutrition Research, 48(1), 14–19.

    CAS  Google Scholar 

  • Delgado-Andrade, C., Morales, F. J., Seiquer, I., & Pilar Navarro, M. (2010). Maillard reaction products profile and intake from Spanish typical dishes. Food Research International, 43(5), 1304–1311.

    Article  CAS  Google Scholar 

  • Escriche, I., Visquert, M., Carot, J. M., Domenech, E., & Fito, P. (2008). Effect of honey thermal conditions on hydroxymethylfurfural content prior to pasteurization. Food Science and Technology International, 14(5), 29–35.

    Article  Google Scholar 

  • European Food Safety Authority (EFSA). (2004). Report of the scientific panel on contaminants in the food chain on provisional findings on furan in food. EFSA Journal, 137, 1–20.

    Article  Google Scholar 

  • Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2011a). Ultraviolet processing of liquid food: a review. Part 1: fundamental engineering aspects. Food Research International, 44, 1571–1579.

    Article  CAS  Google Scholar 

  • Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2011b). Ultraviolet processing of liquid food: a review. Part 2: effects on microorganisms and on food components and properties. Food Research International, 44, 1580–1588.

    Article  CAS  Google Scholar 

  • Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: protective effect of melanins. Journal of Food Engineering, 110(2), 305–309.

    Article  CAS  Google Scholar 

  • Flores-Andrade, E., Beristain, C. I., Vernon-Carter, E. J., Gutiérrez, G. F., & Azuara, E. (2009). Enthalpy–entropy compensation and water transfer mechanism in osmotically dehydrated agar gel. Drying Technology, 27(9), 999–1009.

    Article  CAS  Google Scholar 

  • García, C. F., Moyano, P. C., & Pedreschi, F. (2008). Enthalpy-entropy compensation for water loss of vegetable tissues during air drying. Drying Technology, 26(12), 1563–1569.

    Article  Google Scholar 

  • Gökmen, V., & Senyuva, H. Z. (2006). Improved method for the determination of hydroxymethylfurfural in baby foods using liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 54(8), 2845–2849.

    Article  Google Scholar 

  • Ibarz, A., Casero, T., Miguelsanz, R., & Pagán, J. (1989). Cinéticas de formación de hidroximetilfurfural en concentrado de zumo de pera almacenado a diferentes temperaturas. Alimentaria, 199, 81–84.

    Google Scholar 

  • Ibarz, A., Pagán, J., Panadés, R., & Garza, S. (2005). Photochemical destruction of color compounds in fruit juices. Journal of Food Engineering, 69(2), 155–160.

    Article  Google Scholar 

  • Ibarz, A., Garza, S., Garvín, A., & Pagán, J. (2008). Kinetics of peach clarified juice discoloration process with an adsorbent resin. Food Science and Technology International, 14(5), 57–62.

    Article  Google Scholar 

  • Ibarz, R., Garvín, A., Falguera, V., Pagán, J., Garza, S., & Ibarz, A. (2014). Modelling of patulin photo-degradation by a UV multi-wavelength emitting lamp. Food Research International, 66, 158–166.

    Article  CAS  Google Scholar 

  • Ibarz, R., Garvín, A., Azuara, E., & Ibarz, A. (2015). Modelling of ochratoxin A photo-degradation by a UV multi-wavelength emitting lamp. LWT - Food Science and Technology, 61, 385–392.

    Article  CAS  Google Scholar 

  • Imai, T., & Hirata, F. (2005). Hydrophobic effects on partial molar volume. Journal of Chemical Physics, 122(9), 094509.

    Article  Google Scholar 

  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155.

    Article  CAS  Google Scholar 

  • Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy-entropy compensation.2—Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80(21), 2341–2351.

    Article  CAS  Google Scholar 

  • Labuza, T. P. (1980). Enthalpy/entropy compensation in food reactions. Food Technology, 34(2), 67–77.

    CAS  Google Scholar 

  • Lee, T. P., Sakai, R., Manaf, N. A., Rodhi, A. M., & Saad, B. (2014). High performance liquid chromatography method for the determination of patulin and 5-hydroxymethilfurfural in fruit juices marketed in Malaysia. Food Control, 38, 142–149.

    Article  CAS  Google Scholar 

  • Leeson, S., Díaz, G. J., & Summers, J. D. (1995). Poultry metabolic disorders and mycotoxins. Guelp: University Books.

    Google Scholar 

  • Leffler, J. E. (1955). The enthalpy-entropy relationship and its implications for organic chemistry. Journal of Organic Chemistry, 20(9), 1202–1231.

    Article  CAS  Google Scholar 

  • Lum, K., Chandler, D., & Weeks, J. D. (1999). Hydrophobicity at small and large length scales. Journal of Physical Chemistry B, 103(22), 4570–4577.

    Article  CAS  Google Scholar 

  • Mikheev, Y. A., Guseva, L. N., Davydov, E. Y., & Ershov, Y. A. (2007). The hydration of hydrophobic substances. Russian Journal of Physical Chemistry A, 81(12), 1897–1913.

    Article  CAS  Google Scholar 

  • Missen, R. W., Mims, C. A., & Saville, B. A. (1999). Introduction to chemical reaction engineering and kinetics. New York: Wiley.

    Google Scholar 

  • Morales, F. J. (2009). Hydroxymethylfurfural (HMF) and related compounds. In T. H. Stadler & E. R. Lineback (Eds.), Process-induced food toxicants (pp. 135–174). New York: Wiley.

    Google Scholar 

  • Murkovic, M., & Pichler, N. (2006). Analysis of 5-hydroxymethylfurfural in coffee, dried fruits and urine. Molecular Nutrition and Food Research, 50(9), 842–846.

    Article  CAS  Google Scholar 

  • Ordóñez-Santos, L. E., Vázquez-Odériz, L., Arbones-Maciñeira, E., & Romero-Rodríguez, M. Á. (2009). The influence of storage time on micronutrients in bottled tomato pulp. Food Chemistry, 112(1), 146–149.

    Article  Google Scholar 

  • Pascual-Pineda, L. A., Flores-Andrade, E., Alamilla-Beltrán, L., Chanona-Pérez, J. J., Beristain, C. I., Gutiérrez-López, G. F., & Azuara, E. (2014). Micropores and their relationship with carotenoids stability: a new tool to study preservation of solid foods. Food and Bioprocess Technology, 7(4), 1160–1170.

    Article  CAS  Google Scholar 

  • Pysiak, J., & Sabalski, B. (1979). Compensation effect and isokinetic temperature in thermal dissociation reactions of the type: Asolid ↔ Bsolid + Cgas. Journal of Thermal Analysis, 17, 287–290.

    Article  Google Scholar 

  • Rada-Mendoza, M., Olano, A., & Villamiel, M. (2002). Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. Food Chemistry, 79(4), 513–516.

    Article  CAS  Google Scholar 

  • Rufián-Henares, J. A., Delgado-Andrade, C., & Morales, F. J. (2006). Analysis of heat-damage indices in breakfast cereals: influence of composition. Journal of Cereal Science, 43(1), 63–69.

    Article  Google Scholar 

  • Ryde, U. (2014). A fundamental view of enthalpy-entropy compensation. Medicinal Chemistry Communications, 5, 1324–1336.

    Article  CAS  Google Scholar 

  • Starikov, E. B., & Nordén, B. (2012). Entropy–enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chemical Physics Letters, 538, 118–120.

    Article  CAS  Google Scholar 

  • Sun, D., & Wicker, L. (1999). Kinetic compensation and the role of cations in pectinesterase catalysis. Journal of Agricultural and Food Chemistry, 47(4), 1471–1475.

    Article  CAS  Google Scholar 

  • U.S. Food and Drug Administration, Exploratory data on furan in food: 2004. Available at http://www.fda.gov/Food/FoodSafety/Food Contaminants Adulteration/Chemical Contaminants/Furan/ucm078439.htm. Accessed 20 June 2015.

  • Vorlová, L., Borkovcová, I., Kalábová, K., & Večerek, V. (2006). Hydroxymethylfurfural contents in foodstuffs determined by HPLC method. Journal of Food and Nutrition Research, 45(1), 34–38.

    Google Scholar 

  • Wilfong, E. M., Kogiso, Y., Muthukrishnan, S., Kowatz, T., Du, Y., Bowie, A., Naismith, J. H., Hadad, C. M., Toone, E. J., & Gustafson, T. L. (2011). A multidisciplinary approach to probing enthalpy-entropy compensation and the interfacial mobility model. Journal of the American Chemical Society, 133, 11515–11523.

    Article  CAS  Google Scholar 

  • Williams, D. H., O’Brien, D. P., & Bardsley, B. (2001). Enthalpy/entropy compensation as a competition between dynamics and bonding: the relevance to melting of crystals and biological aggregates. Journal of American Chemical Society, 123(4), 737–738.

    Article  CAS  Google Scholar 

  • Zimmer, K. D., Shoemaker, R., & Ruminski, R. R. (2006). Synthesis and characterization of a fluxional Re(I) carbonyl complex fac-[Re(CO)3(dpop’)Cl] with the nominally tri-dentate ligand dipyrido (2,3-a:3’,2’-j) phenazine (dpop’). Inorganica Chimica Acta, 359(5), 1478–1484.

    Article  CAS  Google Scholar 

  • Zsako, J. (1976). The kinetic compensation effect. Journal of Thermal Analysis, 9, 101–108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly thank the Ministerio de Ciencia e Innovación of the Spanish Government for the funding received in the project CTQ2011-26569. Ebner Azuara thanks CONACYT-México for his sabbatical grant (project 203997). Karla Aguilar thanks CONACYT-México for the doctoral fellowship received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebner Azuara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, K., Garvín, A., Azuara, E. et al. Rate-Controlling Mechanisms in the Photo-degradation of 5-Hydroxymethylfurfural. Food Bioprocess Technol 9, 1399–1407 (2016). https://doi.org/10.1007/s11947-016-1729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1729-7

Keywords

Navigation