Skip to main content
Log in

Limitations of the Log-Logistic Model for the Analysis of Sigmoidal Microbial Inactivation Data for High-Pressure Processing (HPP)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study identified limitations of the log-logistic model to evaluate microbial inactivation kinetics by high-pressure processing (HPP) including the need to assign a numerical value to “approximate” the undefined expression log10 t = 0 and the misinterpretation of its parameters due to a derivation flaw. Peer-reviewed HPP microbial inactivation data were adjusted to a sigmoidal equation (SIG), the original “vitalistic” log-logistic models (VIT-1, VIT-6), and two functions that did not follow the original derivation procedure (LOG-1, LOG-6). Their goodness of fit was determined utilizing the coefficient of determination (R 2) and Akaike information criteria (AIC). The shape of the survival curve greatly influenced the performance of log-logistic models. VIT and LOG models performed equally when the kinetic curve showed a sigmoidal shape, and the numerical values of their parameter estimates were identical regardless of the log10 (t = 0) approximation. Conversely, most concave curves yielded inaccurate parameter estimates for all models. LOG-1 and VIT-1 performed best when log10 t = 0 was −1 or −2, whereas LOG-6 and VIT-6 yielded best results for values of −3 to −9. SIG ranked last for most datasets but occasionally performed best (Akaike weight factor wAICi  = 0.40–1.00) when microbial survival counts showed clear sigmoidal shapes. VIT models consistently displayed R 2 ≥ 0.98, and their parameters can be interpreted within a “biological” context using the corrected derivation shown for LOG models. However, concave curves are more frequently observed for HPP microbial inactivation, and fitting the experimental data to log-logistic models deems unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on., 19(6), 716–723.

    Article  Google Scholar 

  • Baty, F., & Delignette-Muller, M.-L. (2004). Estimating the bacterial lag time: which model, which precision? International Journal of Food Microbiology., 91(3), 261–277.

    Article  Google Scholar 

  • Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2011). An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Engineering Reviews., 3(1), 44–61.

    Article  Google Scholar 

  • Bermúdez-Aguirre, D., & Corradini, M. G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: A review. Food Research International, 45(2), 700–712.

    Article  Google Scholar 

  • Buzrul, S., & Alpas, H. (2004). Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: a preliminary study. FEMS Microbiol Letters., 238(1), 29–36.

    CAS  Google Scholar 

  • Chen, H. (2007). Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiology., 24(3), 197–204.

    Article  Google Scholar 

  • Chen, H., & Hoover, D. G. (2003a). Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innovative Food Science & Emerging Technologies., 4(1), 25–34.

    Article  Google Scholar 

  • Chen, H., & Hoover, D. G. (2003b). Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology., 87(1-2), 161–171.

    Article  Google Scholar 

  • Chen, Z., & Zhu, C. (2011). Modelling inactivation by aqueous chlorine dioxide of Dothiorella gregaria Sacc. and Fusarium tricinctum (Corda) Sacc. spores inoculated on fresh chestnut kernel. Letters in Applied Microbiology, 52(6), 676–684.

    Article  CAS  Google Scholar 

  • Chiruta, J., Davey, K. R., & Thomas, C. J. (1997). Combined effect of temperature and pH on microbial death in continuous pasteurisation of liquids (pp. A109–A112). Sheffield: Engineering and Food at ICEF7, Sheffield Academic Press.

    Google Scholar 

  • Cole, M. B., Davies, K. W., Munro, G., Holyaok, C. D., & Kilsby, D. C. (1993). A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. Journal of Industrial Microbiology & Biotechnology., 12(3), 232–239.

    Article  Google Scholar 

  • Daryaei, H., & Balasubramaniam, V. M. (2013). Kinetics of Bacillus coagulans spore inactivation in tomato juice by combined pressure–heat treatment. Food Control., 30(1), 168–175.

    Article  CAS  Google Scholar 

  • Daryaei, H., Balasubramaniam, V. M., & Legan, J. D. (2013). Kinetics of Bacillus cereus spore inactivation in cooked rice by combined pressure-heat treatment. Journal of Food Protection., 76(4), 616–623.

    Article  Google Scholar 

  • Dogan, C., & Erkmen, O. (2004). High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. Journal of Food Engineering., 62(1), 47–52.

    Article  Google Scholar 

  • Dolan, K. D., & Mishra, D. K. (2013). Parameter estimation in food science. Annual Review of Food Science and Technology., 4, 401–422.

    Article  Google Scholar 

  • Doona, C. J., Feeherry, F. E., Ross, E. W., Corradini, M. G. Peleg, M. (2007). The quasi-chemical and Weibull distribution models of nonlinear inactivation kinetics of Escherichia coli ATCC 11229 by high pressure proocessing. In: C. J. Doona, F. E. Feeherry (Eds.), High pressure processing of foods. IFT Press, 1° edn. p^pp. Blackwell Publishing and the Institute of Food Technologists.

  • Erkmen, O. (2009). Mathematical modeling of Salmonella typhimurium inactivation under high hydrostatic pressure at different temperatures. Food and Bioproducts Processing., 87(1), 68–73.

    Article  Google Scholar 

  • Geeraerd, A. H., Herremans, C. H., & Van Impe, J. F. (2000). Structural model requirements to describe microbial inactivation during a mild heat treatment. International Journal of Food Microbiology., 59(3), 185–209.

    Article  CAS  Google Scholar 

  • Guan, D., Chen, H., & Hoover, D. G. (2005). Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. International Journal of Food Microbiology., 104(2), 145–153.

    Article  Google Scholar 

  • Guan, D., Chen, H., Ting, E. Y., & Hoover, D. G. (2006). Inactivation of Staphylococcus aureus and Escherichia coli O157:H7 under isothermal-endpoint pressure conditions. Journal of Food Engineering., 77(3), 620–627.

    Article  Google Scholar 

  • Huang, K., Tian, H., Gai, L., & Wang, J. (2012). A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. Journal of Food Engineering., 111(2), 191–207.

    Article  CAS  Google Scholar 

  • Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics., 22(1), 79–86.

    Article  Google Scholar 

  • Lee, H., Zhou, B., Liang, W., Feng, H., & Martin, S. E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. Journal of Food Engineering., 93(3), 354–364.

    Article  Google Scholar 

  • Motulsky, H., & Christakopoulos, A. (2003). Using global fitting to test for a treatment effect in a series of matched experiments. In Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting (pp. 183–186). San Diego: GraphPad Software Inc.

    Google Scholar 

  • Mújica-Paz, H., Valdez-Fragoso, A., Samson, C. T., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology., 4(6), 969–985.

    Article  Google Scholar 

  • Muñoz-Cuevas, M., Guevara, L., Aznar, A., Martínez, A., Periago, P. M., & Fernández, P. S. (2013). Characterisation of the resistance and the growth variability of Listeria monocytogenes after high hydrostatic pressure treatments. Food Control., 29(2), 409–415.

    Article  Google Scholar 

  • Mussa, D. M., Ramaswamy, H. S., & Smith, J. P. (1999). High pressure destruction kinetics of Listeria monocytogenes Scott A in raw milk. Food Research International., 31(5), 343–350.

    Article  Google Scholar 

  • Pandey, R. K., Ramaswamy, H. S., & Idziak, E. (2003). High pressure destruction kinetics of indigenous microflora and Escherichia coli in raw milk at two temperatures. Journal of Food Process Engineering., 26, 265–283.

    Article  Google Scholar 

  • Ramaswamy, H. S., Zaman, S. U., & Smith, J. P. (2008). High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. Journal of Food Engineering., 87(1), 99–106.

    Article  Google Scholar 

  • Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Engineering Reviews., 6(3), 56–88.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., Fuentes, C., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2015). Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food and Bioprocess Technology., 8(6), 1244–1257.

    Article  CAS  Google Scholar 

  • Spinner, J. (2014). Hiperbaric ‘can’t complain’ about growth in HPP market. Food Production Daily. Available at http://www.foodproductiondaily.com/Processing/Hiperbaric-can-t-complain-about-growth-in-HPP-market. Accessed 2014-05-12 2014.

  • Tassou, C. C., Galiatsatou, P., Samaras, F. J., & Mallidis, C. G. (2007). Inactivation kinetics of a piezotolerant Staphylococcus aureus isolated from high-pressure-treated sliced ham by high pressure in buffer and in a ham model system: evaluation in selective and non-selective medium. Innovative Food Science & Emerging Technologies., 8(4), 478–484.

    Article  CAS  Google Scholar 

  • Wang, B.-S., Li, B.-S., Zeng, Q.-X., Huang, J., Ruan, Z., Zhu, Z.-W., & Li, L. I. N. (2009). Inactivation kinetics and reduction of Bacillus coagulans spore by the combination of high pressure and moderate heat. Journal of Food Process Engineering., 32(5), 692–708.

    Article  Google Scholar 

Download references

Acknowledgments

Authors Vinicio Serment-Moreno and Jorge Welti-Chanes acknowledge the support from Tecnológico de Monterrey (research chair funds GEE 1A01001 and CDB081), México’s CONACYT Scholarship Program (Grant no. 227790), and the Food Science and Technology department at Oregon State University where author Serment-Moreno completed an international internship. This project was supported also by Formula Grant nos. 2011-31200-06041 and 2012-31200-06041 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Antonio Torres or Jorge Welti-Chanes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serment-Moreno, V., Torres, J.A., Fuentes, C. et al. Limitations of the Log-Logistic Model for the Analysis of Sigmoidal Microbial Inactivation Data for High-Pressure Processing (HPP). Food Bioprocess Technol 9, 904–916 (2016). https://doi.org/10.1007/s11947-016-1677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1677-2

Keywords

Navigation